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Preface

The idea behind the book is to introduce students to one of the fundamental ideas of calculus,
with thorough, tutorial-style explanations. It could be used by students in high school to prepare
themselves for more intensive university courses in calculus, or by students attending university
calculus courses needing a detailed resource.

features of the book:

iii



v

PREFACE



Contents

|Acknowledgements| iii
[Prefacel v
1__Introduction| 1
|2 Review of Prerequisite Skills| 7
13 Slope and Rate of Change| 11
[3.1 Calculating the Slope of a Graph at a Point Using a Limit: Numerical and Visual |
| Approach| . . . . .o 15
[3.2  Calculating the Slope of a Graph at a Point Using a Limit: Algebraic Approach|. . . 20
[3.3 Tangent Lines|. . . . . . . . . . 28
I Defnif FDerivative 35
F s m G 1 47
|6 Right Limits and Left Limits| 65
|7 Continuity| 73
[(.1 _The Intermediate Value Theoreml . . . . . . . . . . . . . . . ... ... ... ..... 78
I8  Vertical and Horizontal Asymptotes| 81
[8.1 Slant Asymptotes|. . . . . . . . L 99
(8.2 What is Infinity?| . . . . . . . .. 106
|9 Rates of Change in Applications| 113
|10 Theory, Part 1: The Formal Definition of a Limit| 125




vi

[11 Theory, Part 2|

{12 Conceptual Review Questions|

CONTENTS

157



Chapter 1

Introduction

What is calculus and what is it used for? Calculus includes an enormous number of ideas, methods,
and applications, and this section is an attempt to provide an overview.

Most of the interesting phenomena that are analyzed scientifically involve change. The flow of
wind and water, the orbits of the planets, the path of a baseball, the movement of a shark, the decay
of a pile of leaves, the digestion of food, the growth of a child — all are situations involving change.
In any change situation, one of the most important questions is: What is the rate of change? That
is, how fast is the change occurring? One aspect of calculus (differential calculus) addresses such
questions.

Most quantities of interest in science are modelled by continuous functions. Differential calculus
can be considered to be a tool for analyzing continuous functions. Besides the class of applications
mentioned in the previous paragraph, calculus is therefore also useful in pure mathematics.

The graph of a function provides a very useful visual representation of the function. For a
straight-line graph of a function of time, the slope of the graph represents the rate of change of the
quantity modelled by the function. Thus, the slope of a graph is of key importance in applications.
However, how does one determine the slope of the graph of a function that is not a straight line?
This is the key question addressed by differential calculus.

Thus, we have a connected set of concepts: Rate of change is a scientifically useful quantity,
which is related to the slope of the graph of the function that models the quantity, which can be
calculated by an algebraic procedure. The algebraic procedure results in another function, related
to the original function, called the derivative of the original function, which contains all the
information about the rate of change of the original function. The process by which one obtains
the derivative from the original function is called differentiation, and is based on the concept of
the limit of a function. All of these concepts will be explained in detail in the textbook posted at
the web site, but at least you are now acquainted with the names of these important concepts.

Calculus is a Latin word that means small stone. In ancient times small stones were used as an
aid to counting. The word calculate derives from this usage of the word. In medicine, a calculus is
a mineral deposit in the body, such as a kidney stone. As mathematics developed, several different
systems for calculating various quantities were developed, and these are all called some kind of
calculus, as you will learn if you progress far enough in your mathematics studies. What we now
call calculus used to be called infinitesimal calculus as a way to distinguish it from other systems
of calculation. However, over time, laziness has resulted in “infinitesimal” being dropped, and so
it is now universally known as calculus. As you learn about limits at the very beginning of your
calculus studies, you will understand what the “infinitesimal” has to do with the subject.

Differential calculus is almost universally learned first, but the more challenging integral calculus
is even more important and practical in applications. The purpose of differential calculus is to
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analyze functions to determine their properties, including their rates of change. An important
basic purpose of integral calculus is to determine the total accumulated amount of a quantity that
gradually changes.

For example, if you have money in your bank account or in an investment that earns interest
every month, there is no need to use calculus to determine the total value of your investment at
the end of a year. You simply take the initial value of the investment and add the twelve interest
quantities that were earned at the end of each month. If every second two drops of water fall from
a water tap, after 100 seconds a total of 2 x 100 = 200 drops of water will have fallen. No calculus
needed.

However, consider a ball that you drop out of a tall building. The ball will gradually pick
up speed at a certain rate. What is the ball’s speed after 2.4 seconds? Well, that’s a more
challenging problem than the investment and droplet problems in the previous paragraph, which
were discrete. The problem of the falling ball is a continuous one; the ball’s speed increases gradually
and continuously. This is a problem for integral calculus, although in the simple situation of no air
resistance, one can calculate the result readily without using the full power of integral calculus, as
we shall see.

The acceleration function of the ball is the derivative of the ball’s velocity function. We can
rely on various experiments to help us determine the acceleration function of the ball. What we
seek is the value of the velocity function of the ball after 2.4 seconds. In this context, we can refer
to the velocity function as the anti-derivative of the acceleration function. The process of deter-
mining the velocity function from the given acceleration function is called anti-differentiation,
or, equivalently, integration.

So, to summarize the differences between differential and integral calculus:

Differential calculus: You have a function of time that models a quantity. The derivative of the
function tells you the rate of change of the quantity.

Integral calculus: You have a function that models the rate of change of a quantity in time.
The anti-derivative of the function tells you the accumulated amount of the quantity after some
time has passed.

Phrased in this way, you can see that the basic problems of differential calculus and integral
calculus are sort of inverses of each other. In differential calculus you seek the derivative of a
function to help you analyze it. In integral calculus problems, you know the derivative function,
and you seek the original function, or at least a certain value of the original function.

Just as the basic problem of differential calculus as a geometric exemplar (calculating the slope
of a curve), so does the basic problem of integral calculus, which will now be described. We humans
have enormous visual cortexes in our brains, and so visual representations are a great aid to learning.
Therefore many concepts in mathematics are first presented as geometric or other visual problems,
so that they will be as memorable as possible, even though their most general applications typically
go far beyond the simple visual situations we first use to explain the concepts.

Suppose that you have the graph of a function and you wish to determine the area enclosed
by the graph, the horizontal axis, and two vertical line. This is indicated by the shaded region in

Figure [L.1]

Suppose that the graph represents the acceleration of a falling object plotted against time. It is
a fact that the area of the shaded region then represents the change in the object’s velocity between
the times a and b. Thus, the problem of determining the change in the object’s velocity has been
reduced to a geometric problem, and this kind of graph is useful in developing the basic concepts
and techniques of integral calculus. Once the techniques have been understood, they are applicable
to other situations beyond the original graph.
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Figure 1.1: Calculating the area of the shaded region is a fundamental kind of problem in integral
calculus.

For example, suppose that you are an engineer designing a propulsion system for sending a space
craft to the Moon. You will first have to determine the position of the Moon at all future times.
You can do this using Newtonian mechanics, one of the best and most useful physical theories
available. In particular, you would use Newton’s second law of motion,

F =ma
which can also be written as

a—= —
m
In applying Newton’s law of motion, you focus your attention on the Moon. You then add up all
of the forces acting on the Moon at this moment as vectors, and then divide by the mass of the
Moon. (The forces acting on the Moon are gravitational forces exerted by the Sun, the Earth,
other planets, and so on.) The result is a vector that tells you the magnitude and direction of the
acceleration of the Moon right now. Knowing the position of the velocity of the Moon right now,
you can then predict what the position of the Moon will be a fraction of a second from now. But by
then the positions of the Moon, the Sun, the Earth, and the rest of the planets will have changed,
so you will have to re-do the calculation to determine where the Moon will be a fraction of a second
later. This is the kind of calculation that you can automate using an electronic computer, but you
will have to understand the situation thoroughly so that you can program the computer correctly.

In summary, careful measurements can give you the current position and velocity of the Moon,
and the positions of all of the other planets. Then you use Newton’s law of gravity to determine the
magnitudes and directions of all the forces acting on the Moon. Then you add up all of the forces
as vectors and then apply Newton’s second law of motion to determine the Moon’s acceleration.
The you use calculus to determine the Moon’s subsequent velocity and subsequent position. The
process here is like the process of anti-differentiation (integration) as described earlier.

Once you know the Moon’s location at all future times (i.e., you know the Moon’s position
function), you will be able to plan how to propel your space craft so that it will reach the Moon
gently and safely at the right time and place.

The same sort of problem-solving procedure occurs in many different fields of science. Newton’s
second law of motion can be considered to be a differential equation, because it is a relation involving
a quantity of interest (position), its derivatives, and perhaps other quantities. In the Moon example,
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it is the position function of the Moon that is of main interest, but Newton’s second law of motion
involves the second derivative of the position function. One has to differentiate the position function
to obtain the velocity function, then differentiate the velocity function to obtain the acceleration
function. Two differentiations are needed to go from position function to acceleration function. For
this reason, Newton’s second law of motion is said to be a second-order differential equation for the
position function.

Many of the most important quantities in physics, engineering, and other scientific fields satisfy
differential equations, and many of them are second-order differential equations. Thus, gaining a
deep understanding of physics, engineering, and many other fields of science, requires an under-
standing of differential equations and how to solve them. Once you understand integral calculus
you will be able to build on this to start tackling differential equations.

The subject of differential equations can therefore be considered to be an advanced branch of
calculus. The usual sequence of learning is that you first learn about “single-variable” calculus;
that is, you learn how to apply calculus tools to functions of one variable, which are the kind you
can plot on graph paper. Then you can learn about differential equations, and at the same time
learn about applying calculus to functions of several variables; the latter is called multi-variable
calculus, and also vector calculus.

In the overall scheme of mathematics, calculus, vector calculus, and differential equations lie
on a branch of mathematics called real analysis. There are other branches of analysis, such as
complex analysis, functional analysis, numerical analysis, and you might also consider probability
and statistics to be in this category as well. Taking a wider view to include other branches of
mathematics, the thredﬂ pillars of mathematics are analysis, topology, algebra, and combinatoricsﬂ
Combinatorics is the systematic study of counting techniques; counting a small number of things
can be easy, but counting all possible ways that various things can occur can be very difficult, and
ingenious techniques have been dreamed up to cope with these difficulties. Topology is concerned
with the shapes of various kinds of geometric objects, and the shapes of various kinds of mathe-
matical spaces, and in particular which kinds of properties of geometrical objects are invariant with
respect to continuous deformations. Algebra, broadly speaking, deals with structural matters in
mathematics, such as identifying interesting mathematical systems to study, and then abstracting
the essential properties of the systems so that theorems can be proved about all possible examples
that share the same properties. Thus, in advanced algebra, one specifies various systems using ax-
ioms (definitions used as starting points), and then one uses logic to prove what one can about all
such systems. Algebra is therefore harder for most people to deal with, because of its abstraction,
but the rewards are many, for this kind of abstract, structural approach yields many insights that
one would not have obtained by studying only concrete examples. However, beginners should learn
by careful study of numerous well-chosen examples as a start, and only get into abstractions later.
Unfortunately, many university courses in mathematics, particularly at higher levels, are taught
too abstractly.

The same spirit of abstraction obtains in the study of mathematical logic and set theory, which
lie at the foundations of mathematics. There are other ways to categorize mathematics (pure
mathematics vs. applied mathematics, for example), but thinking in terms of the pillars of analysis,
algebra, topology, and combinatorics may be helpful for you as you navigate the vast landscape of
mathematics.

Historically, it’s interesting to note that one of the fundamental ideas of integral calculus origi-
nated with Archimedes. His method of exhaustion, a systematic procedure for approximating the
area of a circle using polygons, and improving the accuracy by using polygons with an increasing

!There are three kinds of people in the world: Those who can count and those who can’t count.
2A little joke, as combinatorics still doesn’t get the respect it deserves from some prominent mathematicians,
according to some prominent combinatorics practitioners.



number of sides in a step-by-step way, was devised over 2200 years ago! Unfortunately, the algebraic
and numerical tools had not been developed yet, and the next major advances had to wait until the
1600s, with the work of Fermat, Barrow, and others. The development of analytic geometry (the
idea of using coordinate systems and algebra to study geometric figures) by Descartes was vital.
All of these researchers paved the way for Newton and Leibnitz to unify the diverse results of many
others into a coherent system.

It’s worth noting that Newton developed integral calculus because he desired to solve a specific
problem. If you are a budding researcher, it’s a good idea to keep a journal with problems that you
think of, and jot down ideas for possible solutions. By looking at your problem journal regularly, you
can keep them in the forefront of your thinking, and increase the probability of solving them. This
is what all great researchers do. Newton was busy working out his theory of gravity, and applying it
to the Earth, Moon, and the rest of the solar system. In doing so, he made the assumption that the
gravitational force due to a spherical planet with a density that depends only on the distance from
the centre of the planet could be calculated as if all of the mass of the planet were concentrated at
its centre. This worked out well, but the assumption displeased him. Could he prove this fact, so
that he did not have to assume it? Yes, he certainly did, but he had to invent calculus to do so!

The development of calculus did not stop with the work of Newton and Leibnitz. As is typical
with most mathematical discoveries of this scale, the geniuses who invented the field did not fully
understand it. They were able to get their tools to work because of their great thinking power,
but they did not fully dot every “i” and cross every “t”. This was a time of conflict between the
rationality of the age of enlightenment and the dogmatism of the church. Many mathematicians
and scientists of that time were devoutly religious, but some were openly derisive of religious
extremism. Religious leaders were naturally sensitive to the criticism they were receiving from some
scientists, and they fought back. Bishop George Berkeley levelled quite a few pointed criticisms at
calculus in 1734, to show that these supposedly rational scientists were not reasoning very well at
all. The criticisms were quite valid; there were unsolved problems at the foundations of calculus.
Newton, Leibnitz, and other mathematicians worked with what they called “infinitesimals,” but
not all of their manoeuvers were well-justified. But as I said, this is the way it always goes;
early researchers discover wonderful ideas, and use them to develop powerful methods for solving
problems. Sometimes it takes many years before the foundations are tidied up.

Diderot founded his encyclopedia in 1751, a long project attempting to “encircle” all knowledge
between the covers of its volumes. His co-founder, d’Alembert wrote many articles for this project,
and in his article on calculus he stated that the foundations of calculus had not been clarified yet,
but in his opinion the idea of a limit would be fundamental. Cauchy spearheaded a movement to
strengthen the proofs of mathematical results in the 1800s, particularly in calculus. His great work
Cours d’Analyse was published in 1821, and encouraged the spread of a more rigorous approach to
mathematical analysis throughout Europe. But with all of this attention from so many workers, it
was not until 1872 that the currently accepted definition of the limit of a function was introduced
by Heine and Weierstrass. We shall discuss this most precise definition of a limit later in this
chapter.

The discovery of mathematics is not entirely a logical process; it is a creative one. Eventually,
the foundations of the subject are strengthened by formulating the newly discovered field as an
axiomatic system, with clear definitions and then theorems clearly stated and proved logically.
Unfortunately, textbooks are often written in an axiomatic style, which is not the way most people
learn. Keep this in mind when you read mathematics textbooks.

Limit of a Function

Calculus is a powerful tool for analyzing change situations. Many quantities that change can
be modelled mathematically by functions. Functions can be represented by graphs. The slope of
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a graph is the rate of change of the function. Calculus provides efficient means for calculating the
slope of a graph.

Knowing the rate of change of a quantity helps us to understand a change situation. Calculus
helps us calculate the slope of a graph, which corresponds to the rate of change.

For this reason, the slope problem—the problem of finding general methods for calculating the
slope of a curve—is of central importance. We devote this chapter to laying the foundation for
understanding these methods through the concept of the limit of a function.

Introduction

Most of the interesting phenomena that are analyzed scientifically involve change. The flow of
wind and water, the orbits of the planets, the path of a baseball, the movement of a shark, the decay
of a pile of leaves, the digestion of food, the growth of a child—all are situations involving change.
In any change situation, one of the most important questions is: What is the rate of change? That
is, how fast does the change occur?

In this chapter we shall discuss one of the reasons why calculus is the most powerful tool for
analyzing change situations. Many quantities that change can be modelled mathematically by
functions. Functions can be represented by graphs. The slope of a graph is the rate of change of
the function. Calculus provides efficient means for calculating the slope of a graph, which is equal
to the rate of change of the graphed function.

Knowing the rate of change of a quantity helps us to understand a change situation. For this
reason, the slope problem—the problem of finding general methods for calculating the slope of a
curve—is of central importance. We devote this chapter to laying the foundation for understanding
these methods.

Of course, if the graph of a function is a line, then we don’t need calculus to calculate its slope.
But we’ll start with a review of lines, and then build on this to learn how to calculate the slope of
any graph.



Chapter 2

Review of Prerequisite Skills

Provided that you can easily work through the following problems, you are well-prepared to tackle
this chapter. If you stumble on any of the problems, it may be wise to practice these skills with
suitable practice material before beginning to study the chapter, or at least in the early stages
while you study the chapter. (Answers follow after the questions.)

1. Determine the slope of each line.
(a) The line that passes through the points (1,2) and (4,7).
(b) The line that passes through the points (—1,—2) and (—4, —7).
(c) (1,-2) and (4, =7).
(d) The line that passes through the points (—1,2) and (—4,7).

The line that passes through the points

2. Sketch all four lines from Exercise [1| on the same axes. Notice how the slopes of the lines are
related.

3. Determine an equation for each line in Exercise

4. Determine an equation for the line that passes through the point (—1,3) and
(a) has slope 2. (b) has slope —2. (c) is vertical. (d) is horizontal.

5. Determine which of the following lines has a slope that is

(a) positive. (b) negative. (c) zero. (d) undefined.

6. Determine the average speed in each case.

(a) A car travels on a straight road for a distance of 150 km in a time of 2 h.
(b) A car travels on a winding road for a distance of 80 km in a time of 2 h.

(¢) A car makes a round trip from home to a nearby city 30 km away, and back again, in a
total time of 1.5 h.

7. For the function f(z) = 2% — 2z + 3, determine
(a) f(4) () f(=2) (c) fla) (d) fla+h) () fz+1)

8. Repeat Exercise [7| for each function.

6) fe) = =05 (i) f(e) = vaE T D
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Y
A A A
4 B
3
C
- t ~ D

-1
-2 E
-3
F
—4
JV Y G
Figure 2.1:

9. Expand and simplify each algebraic expression. State any restriction on the variables.
(a) (x —2)(x+3) (b) 2z —1)Bx+4) (c) 2z +1)(z*—-22+3)

(@ 2?2 —x—2 (@) (4 + h)? — 42 ) (a+ h)? —a?
2?2 +x—6 h h
10. Factor each expression as completely as possible.
(a) 22y + 622 (b) 2% — 3z +2 (c) 422 -9 (d) 22 +1

(e) 42 + 42 -3 (f) 2 —4a? +2+6 (g) 82 —27 (h) 823 +27

11. Determine the domain and range of each function.

+ 2 % —5x+6
@y=2"-3 M)y=""0 (Qy=T 2 (d)y=vI—5
12. Rationalize the denominator of each expression.
1 1 4z

(b) ()

VI —+/3 Vr+1++yx—2
13. Rationalize the numerator of each expression.

(a)\/ﬁ—\/g (b)\/a?+4+\/3a:—2 ()\/a+h Va

x+1 Vr+4—+3x -2
ANSWERS
L@s o ©-r @2



10.

y=cats (My=sr-2 (©y=-2-3 (@Dy=—+3

3773 3773
@) y=2+5 b)y=-20+1 (Jz=-1 (d)y=3
() A, B,and C (b) E, F,and G (c) D (d) J

(a) 75 km/h  (b) 40 km/h  (c) 40 km/h

(a) 11 (b) 11 (c)a®—2a+3 (d)a®+2ah+h?>—2a—2h+3 (e) 2®+2

() ()2 (b) does not exist () ag’fz (d) j’(f n fé (¢) 32?31) (i) (a) VI3
M1 () v2aTs (d)v2aT2h+5 () v +7
T+ 1‘

(a) 22 +2—-6 (b) 622 +2x -4 (c) 223 —322+4x+3 (d)
x
h#0 (f)2a+h; h#£0

+3,:c7é2 (e) 8+ h;

(a) 2z(y+3z) (b) (z—1)(z—2) (c) (22—3)(2x+3) (d) cannot be factored using only
real numbers  (e) 2z +3)2z—1) (f) (z+1)(x—2)(x—3) (g) (22— 3)(42% + 62 +9)
(h) (27 + 3)(422 — 62 + 9)
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11. (a) Domain: {z € R}; Range: {y € R|y > =3}  (b) Domain: {z € R|z # 3}; Range:
{y e Rly #1}  (c) Domain: {x € R|z # 3,2 # —1}; Range: {y € R|y # 1}  (d)
Domain: {z € R|z > 5}; Range: {y € R|y > 0}

PSR NAS ESE GRS )
13. () 2x — 5 (b) —x+3 () 1

(x—l—l)(\/ﬁ—i—\/g) 20 +1 —x + 43z — 2 va+h+a



Chapter 3

Slope and Rate of Change

OVERVIEW

The slope of a graph tells us the rate of change of a graphed quantity. This is an important
conceptual foundation for understanding and applying calculus.

In this section we explore the connection between slope and rate of change.

WARMUP

Before you tackle this section, make sure you can solve the following exercises. If you have
difficulties, please review the appropriate prerequisite sections.

(Answers at end.)

1. Determine the slope of the line joining the points (1, —2) and (3,4).
2. Rank the lines in Figure in order of increasing slope.

3. Rank the lines in Figure in order of increasing slope.

Answers: 1. slope = 4; (=2) = g =3; 2.C,B,A; 3. F E,D.

In Figure you can calculate the slope of each line by drawing triangles that have the same
base, as in Figure [3.3] and using the rise-over-run definition of the slope of a line.

From Figure[3.3] the slope of line A can be calculated using the “rise-over-run” definition applied
to the points (—1,1) and (1,4):

rise 4—1 3
1 flnedA=—=— _=_=15
slope of line vl 5

3
Thus, the slope of line A is —, which is the same as 1.5. This means that if you imagine the line to

be the side of a hill, and you always walk from left to right, then every time you move over to the
right by 2 units, you rise 3 units. Equivalently, every time you move over to the right by 1 unit,
you rise 1.5 units.

11



12 CHAPTER 3. SLOPE AND RATE OF CHANGE

w e
Sy

)
Q

1
-« x « x
—473,/75 1 3 4 —4 -3 -2 -1 1 3 4
-1 -1
D
-2 -2
-3 -3 E
—4 —4
Figure 3.1: Rank the lines in order of increas- Figure 3.2: Rank the lines in order of increas-
ing slope. ing slope.
Yy Y
A
4
3
2
> T -«
4
-2
-3
—4
Figure 3.3: Calculate the slope using “rise- Figure 3.4: Calculate the slope using “rise-
over-run.” over-run.”

Similarly, the slopes of the other two lines are:

rise 3—1

2
slope of line — (1) 5
rise 2—1 1

1 fl. C pr— — T e e— 0.5
slope of line p— - (_1) 2

Thus, in order of increasing slopes, line C has the smallest slope, followed by line B, followed by
line A with the greatest slope.
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Note that all three of the lines in Figure have positive slope. You can see this at a glance
by using the hill-climbing analogy for slope: Imagine that each line represents the side of a hill,
and you always climb from left to right (because the positive z-axis points towards the right). If
you climb uphill, the line has a positive slope, and if you climb downhill, the line has a negative
slope. Thus all of the lines in Figure have a negative slope. By drawing triangles all with the
same base, as we just did for the lines with positive slope, you can calculate the slopes of the lines
in Figure The result is that F' has the smallest slope, E is next, and D has the largest slope.

Note that for lines with positive slope, the steeper the hill, the larger the slope, which matches
our every-day sense of steepness. For lines with negative slope, the opposite is true. This means
that more care is needed when ranking the slopes of lines with negative slopes. It may help you to
think about temperatures. A temperature of —2 is higher than —3, which is higher than —5. Thus,
a slope of —2 is larger than a slope of —3, which is larger than a slope of —5, even though the line
with a slope of —5 is steepest.

Also remember that horizontal lines have slope equal to zero, and that it’s not possible to
represent the slope of a vertical line using a number. We can describe the slope of a vertical line
with words (sheer rise, cliff face, etc.) but a numerical value for the slope of a vertical line does not
exist. If you apply the rise-over-run definition of the slope of a line to try to calculate the slope of a
vertical line, you will end up with an expression that includes division by zero, which is undefined
(i.e., makes no sense). Try it yourself to see in detail why the slope of a vertical line cannot be
specified by a number.

CAREFUL!
Infinity is NOT a Number

One of the common errors made by calculus learners is to consider infinity as a number. True,
there are number systems such as the extended real number system in which infinity is successfully
treated as a number, and you can ponder on them if you wish, but for our purposes at this level
of learning calculus, infinity is decidedly not a number.

Numbers satisfy various properties, and infinity does not satisfy these properties. For example,
it might seem reasonable to state that oo + 1 = oo (how could this be any different?), but then
by the usual properties of numbers, we should be able to subtract oo from both sides of the
equation to obtain 1 = 0, which is nonsense. This is enough to rule out infinity as a number,
but you can have fun deriving all kinds of contradictions based on the assumption that it is a
number, for your own amusement. (It won’t take you long to prove that all real numbers are
equal, for example, which is further reinforcement that the assumption that infinity is a number
is not valid.)

Be alert to the use of the symbol co in various arguments in calculus textbooks for various
purposes. Recognize that it is a time-saving symbol that represents various facts or processes.
While you are striving to understand the facts and processes it represents, remind yourself
regularly that infinity, while a very useful concept, is not a number.

Slope and Rate of Change

The following story illustrates why slope is one of the most important concepts in calculus.

Alice and Basil graduate from university and visit a financial advisor who can accurately predict
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the near futureE] The advisor foresees yearly salaries for them as shown in Figure Who will
be better off?

Yy
A

) X

4 X o

Salary . ?
($ Millions) .

2 e X

1 X

< »
Y 1 2 3 4 )

Time (Years, z = 1 means 2021)

Figure 3.5: Salaries for Alice (x) and Basil (e).

If we continue to use the analogy of a hill to represent a graph, then it is the height of the graph
(the y-codrdinate) at a particular a-value that represents the salary for that year. Thus, in the
year 2021, Basil’s salary is $2 million and Alice’s salary is $1 million. Some might argue that Basil
is better off, since in the early years his salary is larger, so he can invest more money sooner and
therefore profit more. Others might argue that they are equally well off, since each makes a total
of $15 million over the five years. It’s dangerous to extrapolate (to guess what happens after the
year 2025), but if the trends in Figure continue, is it clear that in the long run Alice is better
off 7 Although both salaries are increasing, Basil’s is increasing at a rate of $0.5 million per year,
whereas Alice’s salary is increasing at a rate of $1 million per year. Thus, the rate of change of
Alice’s salary is greater than the rate of change of Basil’s salary.

Note that the slope of Basil’s salary graph is 0.5 and the slope of Alice’s salary graph is 1. The
same conclusion is true of all graphs:

KEY CONCEPT
Slope
The slope of a graph is the rate of change of its height.

What is special about the graphs in Figure First, the graphs are sets of discrete points
(a series of separated dots)—this is the kind of graph that results from plotting experimental
measurements, and which therefore one encounters frequently in science. Most of the graphs that
we’ll study in this book are continuous—lines and curves that don’t have any breaks in them—
because those graphs are more frequently encountered in applications. (For example, in the case
of experimental measurements, it is almost always assumed that the quantities being measured are
continuous, even though only a few measurements are made. Therefore, the separated dots on the
graph are usually joined by a smooth line or curve, and it is the formula for the smooth line or
curve that is analyzed.)

'Like all calculus textbooks, this one is also full of improbable situations and unlikely characters. Can financial
advisors really predict the future?
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The second thing about the graphs in Figure that makes them special is that the dots lie
on straight lines, so the graphs are linear. For a straight line, the slope is the same everywhere on
the line, so a single number is enough to specify the slope of a line. That’s not the case for a curve,
as you can see for example in Figure At some points the curve is more steep, at some points
less steep, at some points the slope is positive (going uphill if you move from left to right), and at
some points the slope is negative (downhill). So it is clear that it will be impossible to describe the
slope of an entire curve with just one number—it’s going to be more complicated than that.

y
A
4
A 3
c
9
.
B
< > T
43-2-1] 1 2 3 4

Figure 3.6: The slope of a curved graph is not the same at each point.

But surely we could use a number to describe the slope of a curve at one particular point,
wouldn’t you say? For example, for the curve in Figure if we wanted to know the slope of the
curve at the point A, we could perhaps sketch a straight line that is the best approximation to the
curve at A (this is called the tangent line to the curve at the point A), and then find the slope of
the line. So it seems that the slope of the curve at A is about 1, the slope at B is about 0, and the
slope at C' is about —2.

This method is good for helping us to understand the concept of slope, and it is useful for
obtaining a quick estimate of the slope of a curve at a certain point. However, this method is not
very satisfying because it depends too much on our drafting skills, because it is not very accurate,
and because it doesn’t help us to analyze formulas. Our goal is to be able to calculate the slope
of a curve precisely and efficiently by applying some kind of algebraic procedure to the formula for
the curve.

Next we’ll begin work towards this goal by describing a method for calculating the slope of a
curve at a point. Later we’ll develop more powerful and practical methods, so you can file this
away as a backup plan to use when the more powerful means are not applicable, such as when we
develop new derivative formulas in Chapter 77.

Nevertheless, this method is also very important, because it incorporates some of the most
important fundamental concepts in calculus.

3.1 Calculating the Slope of a Graph at a Point Using a Limit:
Numerical and Visual Approach

We'll start by applying an important principle for solving mathematics problems: If you can’t
calculate a quantity of interest exactly, first approximate it. Then improve the approximation.
This idea works well when you can find a systematic way to improve the approximation to any
desired accuracy.
2
x
To start off, let’s determine the slope of the graph of f(z) = = + 1 at the point where z = 1.

Since we have no idea how to determine the slope of a curve, we’ll approximate the curve by a
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straight line, and use the straight line to estimate the slope of the curve. Then we’ll see if we can
systematically improve the approximation.

GOOD THINKING HABIT
Relating new concepts to ones you already know.

Another good thinking habit that mathematicians use repeatedly is to relate new concepts to
ones already understood. In this case, we're trying to understand how to calculate the slope of a
curve, so we begin by approximating the curve by a straight line, because we already know how
to calculate the slope of a line.

So far we only know how to find the slope of a straight line. So let’s approximate the curve
near x = 1 with a straight line, then calculate the slope of the straight line. We’ll choose two
points on the curve and use the line joining them as the approximation—such a line is called a
secant line. (We use two points on the curve because we have a formula for the curve, so we’ll be
able to find the y-codrdinates of the points given their x-codrdinates.) To start off, let’s choose the
points on the curve that have z-codrdinates 1 and 3; that is, the points A(1,1.25) and B(3,3.25)
(see Figure . The slope of secant line AB is

_325-125
mETRoT T
2
y x
=2 41
¥y=7 +
\

Figure 3.7: The secant line AB gives an over- Figure 3.8: The secant line AC' also gives an
estimate for the slope of the curve at A. overestimate for the slope of the curve at A,

but it gives a better estimate than AB.

Study Figure and note that near the point A(1,1.25) the secant line AB is steeper than the
curve. Thus the slope of the curve at A is less than the slope of the secant line, which is 1. Another

way to say this is that the slope of the secant line AB is an overestimate for the slope of the curve
at A.

How can we make this approximation better? Suppose we find the slope of the secant line
joining the points A(1,1.25) and C(2,2). By examining Figure and thinking about steepness,
note that the slope of secant line AC is less than the slope of secant line AB, but still greater than
the slope of the curve at A. Thus, the slope of secant line AC' is a better approximation to the



3.1. CALCULATING THE SLOPE OF A GRAPH AT A POINT USING A LIMIT: NUMERICAL AND VISUAL

slope of the curve at A(1,1.25) than AB is. The slope of secant line AC' is

2—-1.25
m=——

=0.75
2-1

We can continue this game by picking a point K on the curve that is between A and C and finding
the slope of the secant line AK. By repeating this process over and over, all the while moving the
point K closer and closer to A, we would get better and better approximations to the slope of the
curve at the point A(1,1.25). The following table summarizes the results of a few such calculations;
I encourage you to verify the figures in the table. You could just as well choose other values of s,
as long as they decrease towards 1.

Note that each calculated slope in Table is an overestimate of the true slope of the curve at
the point A (i.e., larger than the true value).

2
Table 3.1: Calculations for overestimates to the slope of the graph of f(z) = % + 1 at the point

A(1,1.25).

2

xr1 | T2 Y1 y2:%+1 h=x0—21 | Y2 — 11 m:y2 Y1
To — T

1 3 1.25 | 3.25 2 2 1

1 2.5 1.25 | 2.5625 1.5 1.3125 0.875

1 2 1.25 | 2 1 0.75 0.75

1 1.5 1.25 | 1.5625 0.5 0.3125 0.625

1 1.1 1.25 | 1.3025 0.1 0.0525 0.525

1 1.01 1.25 | 1.255025 0.01 0.005025 0.5025

1 1.001 1.25 | 1.25050025 0.001 0.00050025 0.50025

1 1.0001 | 1.25 | 1.2500500025 | 0.0001 0.0000500025 | 0.500025

2
So what is the slope of the graph of f(x) = % + 1 at the point A(1,1.25)? It’s hard to say,
isn’t it? From the table of overestimates, it’s clear that the slope of the curve at the point A is less
than 0.500025, but we can’t be sure how much less the true value is.

It’s a bit like being told to estimate the distance from Toronto to Vancouver, and saying, “It’s
about 10 km.” That’s a very poor estimate, partly because there is no statement of its accuracy.
In normal every-day discourse, saying a distance is “about 10 km” contains a certain unspoken
understanding about its degree of accuracy. If the true distance were 85 km, we wouldn’t consider
it very accurate to say the distance were about 10 km. However, we might consider an estimate of
100 km reasonably accurate.

In mathematical or scientific discourse, there is no such unspoken understanding. Saying the
slope of the curve at the point A is about 0.500025 is useless, because it says nothing about how
accurate the estimate is. To make the estimate worthwhile, we have to come up with some measure
of its accuracy.

A good way to do this is to determine an underestimate for the slope of the curve at the point
A. This would be like saying that the distance from Toronto to Vancouver is between 3000 km and
3500 kmE] By giving both the underestimate (3000 km) and the overestimate (3500 km), there is
a built-in statement of the accuracy of the estimate. An improved estimate, because it has greater
accuracy, is to say that the distance is between 3300 km and 3400 km.

2This is the distance by air, not by road.
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2
How do we obtain underestimates for the slope of the graph of f(z) = % + 1 at the point A?
Consider Figure Study the graph to see that the slope of the secant line AD is less than the
slope of the curve at A. (As before, imagine you are walking from left to right, and ask yourself
which is steeper, the secant line AD or the curve near A.) Thus, the slope of the secant line AD
is an underestimate for the slope of the curve at A. The slope of the secant line AD is

1.25 — 1.0625
= ——F—— =0.125
A
(Y (Y
A
z? x?
3 Y= + 3 Y= +
D(—0.5,1.0625) D(-0.5,1.0625)
Se——""4(1,1.25) == 4(1,1.25)
E(0,[1)
-« > z
-1 1 2 -1 1 2
Figure 3.9: The secant line AD gives an un- Figure 3.10: The secant line AE also gives
derestimate for the slope of the curve at A. an underestimate for the slope of the curve

at A, but it is a better estimate than AD.

So far, we know that the true slope of the curve at A is between 0.125 and 0.500025. How can
we make this approximation better? Suppose we find the slope of the secant line joining the points
A(1,1.25) and E(0,1). By examining Figure and thinking about steepness, note that the slope
of secant line AFE is greater than the slope of secant line AD, but still less than the slope of the
curve at A. Thus, the slope of secant line AFE is a better approximation to the slope of the curve
at A(1,1.25) than AD is. The slope of secant line AE is

1251

=0.25
1-0

Thus, our improved estimate is that the true slope of the curve at A is between 0.25 and 0.500025.

We can continue this game by picking a point K on the curve that is between A and E and
finding the slope of the secant line AK. By repeating this process over and over, all the while
moving the point K closer and closer to A, we would get better and better approximations to the
slope of the curve at the point A(1,1.25). The following table summarizes the results of a few such
calculations; I encourage you to verify the figures in the table. You could just as well choose other
values of xo, as long as they increase towards 1.

Note that each calculated slope in Table is an underestimate of the true slope of the curve
at the point A (i.e., smaller than the true value).

So what is the true value of the slope of the curve at the point A? It’s still not clear. What
seems clear is that the slope is smaller than any of the overestimate slopes in the final column of
Table 3.1} but also larger than any of the underestimate slopes in Table [3:2] Thus, the true slope
of the curve at the point A seems to be between 0.499975 and 0.500025. That is the best we can
do at the moment.
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2
Table 3.2: Calculations for underestimates to the slope of the graph of f(x) = % + 1 at the point

A(1,1.25).

2

Tl | T2 Y1 y2:%+1 h=wzy—x1 | y2— 1 m =220
T2 — ]

1 —0.5 1.25 | 1.0625 —1.5 —0.1875 0.125

1 0 1.25 |1 -1 —0.25 0.25

1 0.5 1.25 | 1.0625 —0.5 —0.1875 0.375

1 0.9 1.25 | 1.2025 —0.1 —0.0475 0.475

1 0.99 1.25 | 1.245025 —0.01 —0.004975 0.4975

1 0.999 1.25 | 1.24950025 —0.001 —0.00049975 0.49975

1 0.9999 | 1.25 | 1.2499500025 | —0.0001 —0.0000499975 | 0.499975

Of course, we can always take the calculations further if we wish a more accurate estimate. As
the second point approaches the point A, it seems that the slope of the secant line will become a
better approximation to the slope of the curve at AE] But it also seems apparent that this method
will never give us a definite value for the slope of the curve at the point A.

Let’s conclude this discussion with an assessment of the advantages and disadvantages of this

numerical method for estimating the slope of a curve at a point:

Table 3.3: Advantages and disadvantages of the numerical method for estimating the slope of a
curve at a point.

Advantages Disadvantages

e the calculations are time-consuming

e it seems that the procedure will never

be able to conclusively determine the

precise slope of a curve at a point

e it’s unclear whether it will be quite so easy
to produce overestimates and underestimates
in all cases, and it’s unclear whether it

will be possible to improve the accuracy
indefinitely in all cases

e the procedure can be visualized
graphically

e the calculations are
straightforward (rise-over-run)

e using overestimates and
underestimates makes the estimate
meaningful, and it seems that the
accuracy can be improved by
taking the calculations further

e the idea behind the calculations
is used repeatedly in calculus, so
it’s worthwhile taking the time to
understand it in this concrete

e although the calculations are time-consuming,
they still only help us estimate the slope at a
single point on a single curve; if we desire an
estimate of the slope at another point, even on

the same curve, we have to repeat similar
lengthy calculations all over again

setting

Overall, it seems that the numerical method for estimating the slope of a curve is a good start,
but it would be nice if something better were available. We’ll discuss improvements on this basic
numerical method in the following pages. Before we do so, take this opportunity to practice the
procedure we just illustrated by working out the following exercises.

3 At least it seems to be true in this case; we’ll see later that for curves with very wild wiggles, this is not necessarily
true.
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EXERCISES

(Answers at end.)

Use the numerical procedure outlined in this section (tables of overestimates and underesti-
mates) to estimate the slope of the graph of each function at the indicated point.

1. Estimate the slope of the graph of y = 22 at the point A(2,4).

2. Estimate the slope of the graph of y = 2% + 3 at the point A(2,7).

3. Estimate the slope of the graph of y = 2% + 3z at the point A(2,10).
4. Explain graphically why the results in Exercises 1 and 2 are the same.

5. Explain graphically why the results in Exercises 1 and 3 are NOT the same.

Answers: 1. about 4; 2. about 4; 3. about 7; 4. The graph in Exercise 2 is obtained from the graph in
Exercise 1 by a vertical translation, which does NOT change the slope at a particular z-value. 5. The graph
in Exercise 3 is obtained from the graph in Exercise 1 by combining both a vertical translation and a horizontal
translation; the horizontal translation DOES change the slope at a particular z-value.

3.2 Calculating the Slope of a Graph at a Point Using a Limit:
Algebraic Approach

In the previous section we used a numerical method to estimate the slope of the graph of f(z) =
2

L 41 at the point A(1,1.25). Based on the calculations we’ve done so far, our best estimate is
that the slope is between 0.499975 and 0.500025.

Now we’ll repeat the same calculation, using the same basic idea, using algebra. The algebraic
approach will summarize the tables of numerical calculations in a much more streamlined way, but
the basic idea behind the calculation is the same. Using the algebraic approach, we’ll be able to
come to a definite conclusion about the actual slope of the curve at the point A, as opposed to just
an estimate.

According to custom, we’ll use h to represent the “run” in the “rise-over-run” slope calculation;
that is, h = x5 — 1.

To estimate the slope of the curve at the point A, select a nearby point P on the curve, and
construct the secant line AP; see either Figure [3.11] or Figure [3.12] The slope of the secant line
AP is calculated as follows. Note that after setting up the basic rise-over-run formula for the slope
of the secant line AP, we then simplify the formula as much as possible. The reason for doing
this is to compare the result to the ones obtained previously in the tables of overestimates and
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Figure 3.11: The secant line AP is used in Figure 3.12: The secant line AP is used in
an algebraic calculation of the slope of the an algebraic calculation of the slope of the
curve at A. For this location of the point P, curve at A. For this location of the point P,
the value of h is positive. the value of h is negative.

underestimates, Table and Table

m = slope of secant line AP
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m = —
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The formula m = 0.5+ h/4 tells us the slope of the secant line AP for any position of the point
P; the value of h determines the position of the point P. Recall that h = x2 — 21, and compare
this latest formula for m, the slope of the secant line AP, with the values calculated in Table
(which contains positive values of h) and Table (which contains negative values of h).

By checking for yourself, you can verify that the formula for m reproduces all of the values in the
right-most column of each table. (Do this!) Thus, the formula m = 0.5+ h/4 is a concise summary
of both tables. The algebraic approach and the numerical approach yield the same results.

So what is the slope of the curve at the point A? Consider the formula for the slope of a secant
line that approximates the curve at A; that is, m = 0.5+ h/4. For positive values of h, the formula
yields overestimates for the slope of the curve at A, and all of these values are greater than 0.5.
Of course, as h gets closer and closer to 0, the estimate gets closer and closer to 0.5, just as in
Table Similarly, for negative values of h, the formula yields underestimates for the slope of the
curve at A, and all of these values are less than 0.5. As h gets closer and closer to 0, the estimate
gets closer and closer to 0.5, just as in Table

If you believe the reasoning of the previous paragraph, you must conclude that the slope of the
2

graph of f(z) = % + 1 at the point A(1,1.25) is 0.5, right? What else could it be? For example,
could the slope at A be 0.5000077 No, and it is important to understand why. We argued that for
positive values of h, the true value of the slope of the graph at A is less than m = 0.5 + h/4. But
if we choose the point P so close to A that A = 0.000004, then the true slope of the curve must be
less than 0.5+ 0.000004/4, which means that the true slope must be less than 0.500001. Thus, the
true slope could not possibly be equal to 0.500007.

The important point is that the same kind of argument could be made to show that no matter
which number r we choose, however slightly greater than 0.5 the number r is, that number could
not possibly be the true slope of the graph at A, because by carefully choosing h to be a small
enough positive number, we can show that the true slope of the graph is actually less than r.

We can construct a similar argument using negative values of i to show that no matter which
value s we choose, no matter how slightly less than 0.5 the number s is, that number could not
possibly be the true slope of the graph at A, because by carefully choosing h to be a negative
number whose absolute value is small enough, we can show that the true slope of the graph is
actually less than s.

2

Does this reasoning convince you that the slope of the graph of f(z) = % + 1 at the point
A(1,1.25) is 0.5? The reasoning is valid for this particular function, but it depends crucially on the
fact that for positive values of h, the formula for m always gives an overestimate for the true slope,
and for negative values of h the formula for m always gives an underestimate for the true slope.
This is not true for all functionsﬁ in particular, functions whose graphs have lots of “wiggles” near
the chosen point A will be problematic. (Sketch some graphs and see if you can understand why
this is so.)

Let’s try a different argument, one that does not depend on the fact that positive values of h
lead to overestimates in the slope formula, and negative values of h lead to underestimates in the
slope formula. Remember that in our initial numerical approach, we started with a secant line AP
that approximated the curve, then moved the point P closer to A to get a better approximationﬁ
What happens to h as the point P gets closer and closer to A7 The value of h gets closer and closer
to 0.

4Tt is true for functions whose graphs are “concave up;” that is, if you constructed a wire model of the graph
starting with a straight piece of wire, you would only have to bend the wire upwards. We’ll learn a more precise
definition of concave up in Chapter ?7.

5The point A stays fixed, because we’re interested in calculating the slope of the curve at A.
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Thus, the physical action of moving P closer and closer to A corresponds algebraically to
evaluating the slope formula m = 0.5+ h/4 for values of h that are closer and closer to zero, as was
done in the tables. As h gets closer and closer to zero, h/4 also gets closer and closer to zero, and
therefore the slope of the secant line AP gets closer and closer to 0.5. Another way to say this is:

The limit of the quantity m = 0.5+ h/4 as h approaches zero is 0.5. In symbols,

lim m = lim (0.5 + h) =0.5
h—0 h—0 4

Why don’t we just substitute h = 0 in the slope formula m = 0.5+ h/47 The result is the same,
so why did we have to provide such careful reasoning? There are two reasons for this. First, the
reasoning is necessary to explain this fundamental concept of calculus. Second, there is a technical
reason: Notice that in the process of simplifying the slope formula, we divided the numerator and
denominator by h. (Equivalently, you could say we cancelled a factor of A from the numerator and
denominator.) This step in the procedure is valid only if A # 0, so it would be inconsistent if we
said h # 0 at one point in the calculation and then turned around later and said that we’re now
letting h = 0.

=~ 11
y=7 +
Yy m
A A
(14 h)? )
4
h
m = 0.5+ 1
125 I ] | /
~_ ! ! 0.5
§ l l . § / ' h
1 1+h
4
Figure 3.13: The secant line AP is used in Figure 3.14: The graph shows the values of
an algebraic calculation of the slope of the the slopes of secant lines AP to the graph of
2
curve at A. The absolute value of h is the y = 7 +1 as a function of h, which indicates
distance between the z-coordinates of A and the position of the point P.
P.

If we plot the slope formula as a function of h, we get the graph in Figure Note that
there is an open circle in the graph at h = 0, which represents the fact that the value h = 0 is not
allowed. Also note that for positive values of h, the slope of the corresponding secant line is greater
than 0.5. For negative values of h, the slope of the corresponding secant line is less than 0.5. The

true value of the slope of the graph of y = % + 1 at the point A is 0.5, the number that is less

than all of the overestimates, but greater than all of the underestimates. In other words, the true
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2
value of the slope of the graph of y = % + 1 at the point A is the value on the m vs. h graph that

corresponds to the open circle.

2

Now are you convinced that the true value for the slope of the graph of y = % + 1 at the point
A is 0.57 Although the argument is sound, it may not be so easy to apply the argument for more
complicated functionsﬁ Part of the problem is that although we have named the process used to
determine the slope of a curve (calculating a limit), we have not given a good definition of the limit
concept. And we won’t give a precise definition for a while, preferring to encourage you to play
with the method first to get some experience. For a precise definition of the limit concept, and a
logically air-tight version of the arguments given here, see Section

Next, let’s look at some examples of applying the method to calculate the slope of a curve at a
point. We’ll start with simple examples, and move to more complex examples later.

GOOD THINKING HABIT
Test new concepts in situations where you already know the result.

When encountering new concepts, it’s a good idea to apply the new concept in a situation where
you already know the result. This will give you some confidence that you are using the new
concept correctly.

We have just learned a method for calculating the slope of a curve. In the next example, the
method is applied to determine the slope of a straight line. Try the method on other straight
lines as well.

This fits in with the usual way to learn mathematics: start with the simple, and then gradually
move to the more complex as your understanding grows.

SFor example, for functions with lots of “wiggles,” the slopes of secant lines may fluctuate wildly as h approaches
0, which might make it difficult to discern a trend in the values.
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EXAMPLE 1
Using a limit to determine the slope of a graph at a point.

Use the limit procedure to determine the slope of the graph of f(x) = 2z + 3 at the point for
which z = 5.

SOLUTION

Because the graph of f is a straight line, and its formula is in the form ma + b, we can read the
slope from the formula: The slope of the line, at each of its points, is 2. Thus, we know that the
result of the following calculation must be 2.

Now let’s actually do the limit-style calculation to check that the result really is 2:

m = slope of secant line AP

rise
m = —

run

Y2 — Y1
m =

T2 — 1

_ fB+h)—f(5)
m =
(5+h)—5

[2(5+ h) + 3] —[2(5) + 3]

m =
54+h—5

[10 4+ 2h + 3] — [10 + 3]

m =
h
I [13 + 2h] — [13]
h
m P %
- h

m = 2 (provided that h # 0)

Thus, the slope of the graph of f(x) = 2x + 3 is 2, as expected.

Notice that h does not appear in the final expression; this makes sense, because for a straight
line, it does not matter how far away the points A and P are—the slope will always be the same.

Now let’s calculate the slope of the graph of a quadratic function.
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EXAMPLE 2
Using a limit to determine the slope of a graph at a point.

Use the limit procedure to determine the slope of the graph of g(z) = 22 at the point for which
=3

SOLUTION
m = slope of secant line AP
rise
m = —
run
Y2—hN
m = ——
o — X1
B )
(3+h)—3
3+ 1?] - [
m =
3+h—-3
9+ 6h + h?] —[9]
m =
h
_ 6h+h?
T T
_ h(6+2h)
"= h

m = 6+ 2h (provided that h # 0)

For positive values of h, the slopes of the secant lines AP are greater than 6; for negative values
of h, the slopes of the secant lines AP are less than 6. Also, as h gets closer and closer to 0, the
values of the slopes of the secant lines get closer and closer to 6. That is,

lim m = lim (6 + 2h) = 6
h—0 h—0

Thus, the slope of the graph of g(x) = 22 at the point for which z = 3 is 6.

Does this seem reasonable? It would be a good idea to plot the graph and sketch some secant
lines to check for yourself whether the result is reasonable.
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EXAMPLE 3
Using a limit to determine the slope of a graph at a point.

Use the limit procedure to determine the slope of the graph of p(x) = 422 4 3z — 7 at the point
for which x = 2.

SOLUTION
m = slope of secant line AP
rise
m = —
run
Y2—hN
m = =
T2 — 1
L pHh) )
(2+h)—2
S [4(2+R)2+3(2+h) — 7] — [4(2%) +3(2) — 7]
- 2+h—2
[4(4+4h+h?) 4+ 6 +3h — 7] — [4(4) + 6 — 7]
m =
h
[4(4)+16h+4h2+6+3h—7] —15
m =
h
[15 4 19h + 4h*] — 15
m =
h
I 19h + 4h?
N h
h(19 + 4h)
S

m = 19+ 4h (provided that h # 0)

Taking the limit as h approaches 0 of the expression for the slope of the secant line gives us the
slope of the graph:

lim m = lim (19 + 4h) = 19

h—0 h—0
Thus, the slope of the graph of p(x) = 422 + 3x — 7 at the point for which x = 2 is 19.

Does this seem reasonable? It would be a good idea to plot the graph and sketch some secant
lines to check for yourself whether the result is reasonable.
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EXERCISES

(Answers at end.)

Use the algebraic procedure outlined in this section (limit of the slopes of secant lines as h
approaches 0) to calculate the slope of the graph of each function at the indicated point. Then
draw a rough graph and sketch some secant lines to check for yourself whether the result is
reasonable.

1. Calculate the slope of the graph of y = 22 at the point A(2,4).

2. Calculate the slope of the graph of y = 2% + 3 at the point A(2,7).

3. Calculate the slope of the graph of y = 22 + 3z at the point A(2, 10).

4. Calculate the slope of the graph of y = 222 — 5z 4 7 at the point A(—1, —10).

5. Calculate the slope of the graph of y = 222 — x — 5 at the point A(1, —4).

Answers: 1. 4; 2.4; 3.7, 4. -9; 5.3

GOOD QUESTION

Does the limit procedure for determining slope work at every point on the graph of
every function?

Will the algebraic or numerical procedure for determining the slope of a curve work for all points
of all graphs? NO. So which points on which graphs does it work for? How can we be sure that it
works? What do the graphs look like at points for which the procedure works, and at points for
which the procedure does not work? These are very good questions, and they will be discussed
later in the chapter.

Suppose you go through the process for determining the slope of the graph of a function f at
a point (a, f(a)). If the process is successful, we call the function f differentiable at x = a. If the
process is not successful, we say the function f is not differentiable at x = a. If the process is
successful for all values in the domain of f, then we simply say that f is differentiable. This will
be discussed at greater length in Section

3.3 Tangent Lines

Consider the process we have been using to calculate the slope of the graph of a function f at a
point A. It would be interesting to sketch the line that passes through A that has the same slope
as the graph of f at A. This line is called the tangent line to the graph at A.
2

Recall our calculation of the slope of the graph of y = % + 1 at the point A(1,1.25); see
Figure[3.7to Figure[3.10|and Table[3.1]and Table[3.2]for the numerical approach, and see Figure[3.13
and Figure for the algebraic approach. Recall that the result of the calculation is that the
slope of the graph at A is 0.5.

To determine the equation of the tangent line to the graph at A (that is, the line that passes
through A and has slope 0.5), you can use any of the methods you learned in high school. For
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example, you can let (x,y) represent an arbitrary point on the line other than A, write an expression
for the slope of the line joining (z,y) and A(1,1.25), then equate the expression to 0.5, and finally
solve for y, as follows:

y—1.25
rz—1
y—125 = 05(x—1)
y—125 = 0.5z—-0.5
y = 0.52+0.75

= 0.5

y
2
X
=2 41
3 y="7+
\
<I’Ay/)'/ A(1,1.25)
T
~1 1 2

Figure 3.15: The tangent line at the point A passes through the point A and has the same slope
as the curve at the point A.

Figure shows the graph of the function together with the tangent line at A(1,1.25). If
you think of the curve and tangent line as hill sides, and walk along the curve from left to right
as always, then the steepness of the curved hill side at the point A is exactly the same as the
steepness of the straight hillside. The curve is less steep than the straight line before you reach A,
and more steep after, but at the point A the curve and the straight line have the same slope.

One way to summarize the previous paragraph is to say that the tangent line to the curve at A
is the best straight-line approximation to the curve near A. That’s a good way to understand the
tangent line geometrically.

KEY CONCEPT
Geometric and algebraic perspectives on tangent lines

The tangent line to a curve at a point A is the best linear approximation to the curve at A. The
slope of the tangent line is determined by calculating a certain limit.

This “best linear approximation” perspective on tangent lines is fundamental in calculus, and
this concept will be used over and over as you learn about calculus. It is worth returning to this
basic concept as your understanding of calculus grows.
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EXAMPLE 4

Determining the equation of a tangent line to a graph at a point.

Determine an equation for the tangent line to the graph of f(z) = 22 — 32z + 1 at the point

A(2,-1).
SOLUTION

Strategy: First determine the slope m of the tangent line, using an appropriate limit. Then use
the slope m and the point A(2, —1) to determine the equation of the tangent line.

Step 1: Consider a point P on the graph of the function f, where the z-coordinate of P is a
distance h from the z-coordinate of A. The slope of the secant line AP is

slope of secant line AP

rise

Y2 — N
T2 —I
f2+h) - f2)
(2+h)—2
[(24+h)2=32+h)+1] — [(2)* = 3(2) + 1]
h
[4+4h+h*—6—3h+1] —[4—6+1]
h
[h+h% —1] — [-1]
h
h+h?—1+1
h
h + h?
h
h(1+ h)
h

1+h (provided that h # 0)
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Y flz) =a* =3z 41 Yy f(x)=2%-3x+1

— T
24+ h
A(2,-1)
Figure 3.16: Diagram for calculating the Figure 3.17: The tangent line to the graph
slope of a secant line AP. of f(x) = 2% — 3z + 1 at the point A.

Thus, the slope of a secant line AP is 1 4 h, where h represents the horizontal distance between
A and P. The slope of the secant line AP is an approximation to the slope of the curve at A.
As P approaches A, the approximation gets better and better. The precise value m of the slope
of the curve at A, which is also the slope of the tangent line to the curve at A, is obtained by
taking the limit of the slope of the secant line AP as h approaches zero:

m = lim (1+h)
h—0
m = 1

As h gets closer and closer to 0, the slope gets closer and closer to 1. Thus, the slope of the
tangent line to the curve at A is 1.

Step 2: Use the slope m = 1 of the tangent line and the point A(2, —1) (which lies on the tangent
line) to determine an equation for the tangent line. There are a number of ways to do this; we
know an equation of the tangent line can be written the form y = mxz + b, which isy =z + b
for this example, because we know the slope is m = 1. Then we can use the fact that the point
A(2,—1) lies on the tangent line to determine the value of b:

y = x+b

-1 = 2+0b
-1-2 =

-3 = b

Therefore, the equation of the tangent line is y = © — 3. The graph of this line is plotted in

Figure [3.17]

Now test your understanding of the process for determining the equation of a tangent line by
completing the following exercises.
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EXERCISES

(Answers at end.)

Determine an equation for the line that is tangent to the graph of the given function at the
given point.

1. y = —2% + 3 at the point A(—1,2)

2. y = —x? + 3 at the point A(1,?2)

3. y = 32? — 2z at the point A(1,1)
4. y = 32 — 2z at the point A(0,0)
5. y =222 — 4z + 3 at the point A(1,1)

(

6. y = 222 — 4z + 3 at the point A(0,3)

Answers: 1. y=2zx+4; 2. y=-2x+4 3. y=4r—-3; 4. y=-2x; 5. y=1; 6. y=—4x+3

CAREFUL!
Misconceptions about tangent lines

So we now have a good algebraic perspective of tangent line (it’s the line through A with slope
determined by the limit process discussed earlier) and a good geometric perspective (best linear
approximation to the curve near A). Many books try to give simpler geometric definitions of
tangent line, but this invariably fails. The only way to characterize tangent lines to curves in
full generality is the way described earlier in this section.

As usual, misconceptions abound on the internet, and one must be careful when reading at
random sites. For example, some sources attempt to characterize tangent lines by saying that
they intersect a curve only once. This is clearly insufficient to capture the true nature of a
tangent line, and also is incorrect. For example, the line z = 0 intersects the graph of y = cosz
only once, but it is clearly not a tangent line to the graph. The tangent line to the graph of
y =cosz at £ = 0 is y = 1, as you can observe by sketching a graph of the function and the line.
Note that the tangent line intersects the graph of the function at an infinite number of points!

An even more extreme example is any linear function. The tangent line to the graph of any
linear function is the same line, which intersects the function at all (infinite number) of points
of the graph.

In only certain extremely special cases can a tangent line be characterized more simply than in
the way we have described in this section. One case we just discussed: Linear functions. Another
simple situation is a circle, where at each point on a circle, the tangent line is the unique line
through that point that is perpendicular to the radius that connects the centre of the circle to
that point.
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SUMMARY

In this section, we learned a numerical version and an algebraic version of a process (calculating
a limit) used for calculating the slope of the graph of a function at a point. This process is
fundamental in calculus; the slope of a graph is connected to the rate of change of the quantity
modelled by the graph, so knowing how to calculate the slope of a graph gives us a way of
calculating rates of change.

Next we’ll extend this process so that we can calculate the slope of a graph at an arbitrary
point; that is, we’ll treat the entire graph in one calculation, rather than having to do a separate
calculation at each point.
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Chapter 4

Definition of Derivative

OVERVIEW

The derivative of a function is a new function that contains all of the information about the slope
of the graph of the original function at each of its points. Thinking in terms of the derivative
function provides a more streamlined and powerful way of calculating the slope of the graph of
a function at any of its points. This is particularly useful when you need to analyze the slope of
an entire graph, not just at a single point.

WARMUP

Before you tackle this section, make sure you can solve the following exercises. If you have
difficulties, please review the appropriate prerequisite sections.

(Answers at end.)

Determine an equation for the tangent line to the graph of the function y = x? at each of the
points A(1,1), B(2,4), and C(—1.5,2.25).
Answers: 1. y=2x—1; 2. y=4x—4; 3. y=—3x— 2.25.

In the previous section we learned numerical and algebraic approaches for calculating the slope of
the graph of a function at a point A. Both approaches used the same basic idea: First approximate
the curve by drawing a secant line joining the point A to a nearby point on the curve P. Then
calculate the slope of the secant line AP. Finally, take the limit of the slope of the secant line AP
as the point P approaches A while staying on the curve. The result is the precise slope of the curve
at the point A.

The numerical approach had some advantages and disadvantages; the algebraic approach im-
proves on some of the disadvantages of the numerical approach. However, as you noticed in the
warmup to this section, one of the disadvantages of the algebraic approach as we have used it so
far is that if you wish to calculate the slope of a curve at several different points, you have to apply
the process separately for each point. That is a lot of work; it would be nice if we could do the
calculation “once and for all” for a curve instead of having to repeat the same sort of work over
and over again for each point.

Let’s see how we can improve the algebraic approach to calculating the slope of a curve. Rather
than specify a particular point A, let’s instead calculate the slope at an arbitrary point A(a, f(a)).
The hope is that the result of the calculation will be a formula for the slope in terms of a; then,
if we want to know the slope at several points, it might be relatively easy to substitute the values
into the resulting formula. That is the hope—Ilet’s see if it works.

35
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Y fz) = a? Y f(x) = 2?
a+h)?t-------- /
(0+) .
A A
a2<'777\ | a’2<'777\
“ | | T | x
/ @ a+h / a
Figure 4.1: To calculate the slope of the Figure 4.2: The result of taking the limit of
curve at A, start with an expression for the the slopes of secant lines is the slope of the
slope of the secant line AP, then take the curve at A, which is the same as the slope of
limit as P approaches A along the curve. the tangent line at A.

Let’s apply this idea to the function f(x) = x2. Consider the arbitrary point A(a,a?) on the
graph, and a nearby point P(a + h, (a + h)?), also on the graph. The slope of the secant line AP
is calculated as follows:

rise

slope of secant line AP = —
run

Y2 — U1
T2 — 1
fla+h) = f(a)
(a+h)—a
(a+h)?—a?
h
a® + 2ah + h? — a?
h
2ah + h?
h
h(2a + h)
h
= 2a+h (provided that h # 0)

The formula 2a + h represents the slope of a secant line AP for various points A and P on the
graph. If we now let the point P approach the point A along the curve (which amounts to taking
the limit of the expression as h approaches 0), then we will obtain an expression for the slope of
the tangent line at the point A:

slope of tangent line at A = lim (2a + h)
h—0

= 2a

This beautiful little formula tells us that, for the graph of the function f(z) = 22, the slope of the
graph at A(a,a?) is 2a.
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Now, let’s use this new formula to check the slopes you calculated in the Warmup questions at
the beginning of this section:

Point Slope (using formula 2a) | Slope (from Warmup)
(1,1) 2 2
(2,4) 4 4
(—1.5,2.25) -3 -3

The new formula indeed reproduces the calculations you did in the Warmup. You can see
the advantage of the new approach: The limit procedure was carried out just once for the entire
function, instead of three times (once for each point).

In the slope formula 2a, consider Mr. Shakespeare’s words in Romeo and Juliet:

What’s in a name? That which we call a rose
By any other name would smell as sweet.

If we had labelled the point A by (z, 22) instead of (a, a?), then the slope formula would have come
out as 2z. This is not saying anything new, just saying the same thing in different symbols. We
could have chosen to say it in words just as well: The slope of the graph of f(x) = 22 at any point
is twice the value of the z-coordinate at that point. The point is that it doesn’t matter which
symbol we use, a, x, or some other symbol; the fact is the same, regardless of the symbol used.

So why would we wish to use the symbol x instead of the symbol a to represent the z-coordinate
of the arbitrary point A? Well, because we are used to thinking of functions in terms of the symbols
x and y, and therefore it will be easier for us to recognize the slope formula 2z as a new function.
We call this new function the derivative of the original function f(z) = 2, and we symbolize the
derivative function as f’(z).

So, we have just learned our first derivative formula: For the function f(x) = 22, the derivative
function is f'(z) = 2.

CAREFUL!
Watch out for the same symbol used to mean two different things

Mathematics textbooks occasionally use the same symbol to mean two different things, which
can be confusing unless you are aware of it. This is the primary reason for using a in the slope
calculation we just completed, rather than x. In the slope calculation, the point A remains fixed,
and therefore the corresponding z-value a also remains fixed. So it’s useful to use two different
symbols here; x represents the independent variable, and a represents a particular fixed value of
the variable z.

However, many books use x to stand for both quantities in this type of calculation, so one must
be on guard to avoid confusion. Perhaps the best approach is to remember that, in the limit
calculation, a (or z, if you wish to call it ) remains fixed but arbitrary. Once the formula (slope
= 2a, or slope = 2z if you prefer) is obtained, then one understands that the value of a (or the
value of z, if you prefer) is arbitrary, and so any value in the domain of the function f can be
substituted for a (or x) in the slope formula.

The formal definition of the derivative can be stated in several ways; here’s one way:
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DEFINITION 1

Derivative

The derivative of the function f at the point A(a, f(a)) is defined to be

Fl@) — tim 10D = F(@)

h—0 h

provided that the limit exists. If the limit exists, then we say f is differentiable at x = a. If f is
differentiable at all values of x in its domain, then we simply say that f is differentiable.

An equivalent definition involves the expression

fa) — tim 18 = 1@)

T—a r — a

One can obtain this expression from the one above by replacing h by (z — a). The two versions
of the definition of derivative are illustrated in Figure [£.3 and Figure [4.4

y = f(x) y = f(z)

fl@) === —

~_ l l

< l ez , g

a a+h
A,

Figure 4.3: The limit of the slope of the se- Figure 4.4: The limit of the slope of the se-
cant line AP as P approaches A (that is, as cant line AP as P approaches A (that is, as
h approaches zero) is the derivative of f at x approaches a) is the derivative of f at the
the point A. point A.

Note that the definition summarizes the procedure that we have used quite a number of times
already. On the right side of the definition is the limit of a quotient. The quotient itself represents
the slope of a secant line AP (the usual “rise-over-run”), and taking the limit as h approaches 0
means to allow the point P to approach the point A along the curve to improve the estimate until
it becomes precise.

Also note the phrase “provided that the limit exists” in the definition of the derivative. This
implies that there might be some function for which the limit does not exist at some point, and
therefore the function does not have a derivative at that point. We will explore this in the following
sections, but you might give some thought now to whether such a function exists, and if so, what
its graph might look like.

Is the derivative formula f/'(r) = 2z for the function f(z) = 2? reasonable geometrically?
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Y Y
A 1 A
fl@)=2* | fl(z) =22 fla)=a— 3 f(z) =2
3tr------- ‘ 3tr-------
2 | 2
1 LT | 1}--
- ! } ‘ ‘ - T - 1 3 - T
2 -1 12 21 i A1
e e
| -2 ! —2
A -3 A -3
Figure 4.5: The height of the derivative func- Figure 4.6: Notice that shifting the graph
tion f’ (red) is equal to the slope of the func- down by % unit does not change the slope of
tion f at the corresponding value of x. the graph at each value of x.

Consider Figure Note that the height of the derivative function f’ (in red on the graph) tells
us the slope of the function f at the same value of x. Follow the dashed vertical lines on the graph,
and see if you can understand this point. Some representative tangent lines are also drawn to help
you.

For example, at © = 1, the height of the derivative graph is 2(1) = 2, and that is also the slope
of the graph of f. Does this make sense from looking at the graph? Now make a related observation
for the graph at x = —1: Note that the height of the derivative graph f’ is —2; does that appear
to be the slope of the graph of f at + = —17 Continue this comparison for the other indicated
x-values on the graph (i.e., the ones with the vertical dashed lines).

Note that translating the graph vertically up or down does not change the slope of the graph at
any particular z-value. In Figure [£.6] the graph of the function in Figure [£.5]is translated vertically
down by 1/2 unit. Check the indicated z-values on the graph, and compare the graph with the one
in Figure to see that the slopes of the graph of the function are not changed by this vertical
translation by 1/2 unit.

The same reasoning tells us that a vertical translation by any amount, positive or negative, will
not change the slope of a graph. Let’s now convert this geometric statement into an equivalent
algebraic one: The derivative of a function will not change if a constant value is added to or
subtracted from it.

Let’s prove this fact for the function that we have been working with, f(z) = x2, by finding the
derivative formula for the function g(x) = 22 + ¢, where c is a constant that could be positive or
negative. Using the definition of the derivative, we get:
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slope of secant line AP = mse

run

Y2 —U

1w

_ gla+h)—g(a)

~ (a+h)-a
[((a+h)*+¢] = [a® + (]

N h
[a2+2ah+h2+c] — [a2+c]

N h

B a’+2ah+h?>+c—a®>—c

- h
2ah + h?

N h

_ h(2a+nh)

- h

= 2a+h (provided that h # 0)

The formula 2a + h represents the slope of a secant line AP for various points A and P on the
graph. If we now let the point P approach the point A along the curve (which amounts to taking
the limit of the expression as h approaches 0), then we will obtain an expression for the slope of
the tangent line at the point A:

slope of tangent line at A = lim (2a + h)
h—0

This formula tells us that, for the graph of the function g(x) = 2% + ¢, the slope of the graph at
A(a, a®+ c) is 2a. This is exactly the same formula as the slope formula for the function f(z) = x2
at the point (a,a?). This shows that vertically translating the graph of the function f up or down
by a distance |c| does not change the slope of the graph.

The proof for an arbitrary function is similar; see the theory section at the end of the chapter.

Let’s try another example of calculating the slope of a curve, shall we? But this time we shall
be a bit more formal (but don’t worry, it’s the same calculation we’ve been doing over and over)
and use the definition of the derivative.
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EXAMPLE 5

Determining a derivative formula

1
(a) Determine the slope of the graph of the function f(z) = — at the point A(a,1/a).
T
(b) Use the result of Part (a) to determine the slope of the graph of f at the points (—2,—0.5)
and (1,1).
SOLUTION

(a) The instruction tells us to determine a formula for the derivative function, f’(z). Let’s apply
the definition of the derivative.

fla+h) - f(a)

/ _ .
fla) = Jim h
Lh_l
/ _ : a-+ a
fla) = Jim ==

Now we need to simplify a fraction within a fraction. A smooth way to proceed is to observe
that dividing by A is the same as multiplying by 1/h, and rewrite the expression as follows:

1 1 1
!/ — 1 - _
a) hs0 [h} [a—i—h a]
Now let’s get a common denominator to simplify the difference of fractions in the right-hand

bracket. To do this, multiply the numerator and denominator of the first term by a, and then
multiply the numerator and denominator of the second term by (a + h), then simplify:

, o T e a+h

fla) = ilzlg(l) Lh] [a(a+h) a(a+h)]
(1] [a—(a+h

fla) = Jim % a((1(+—’;L)):|

, o 1 (a —a—h

fla) = y%]q_am+h£

/ R R

fm)"ﬁ%_m_aa+m]

Now we can divide the numerator and denominator both by h, as usual, provided that h # 0{7
-1
!/ — 1 -
fa) ﬁ%[da+hﬂ

Finally we are in position to evaluate the limit. As usual, we ask ourselves what happens to the
expression as h gets closer and closer to 0. In this case, the result is

fla) = flng(lJ [a(a_—ih)}
1
a(a)

“Notice that this division of numerator and denominator by h has been a key step in all of our calculations
of slopes of curves so far. This is typical; the point of simplifying the rise-over-run expressions is to achieve this
cancellation of the h-factors in numerator and denominator so that the limit may be calculated.
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fa) ==

a

If we wish to express the result in terms of z, we could just as well write the derivative formula

as
1

/ _
) =
This result is illustrated in Figure [4.7]

(b) When z = —2, the slope of the graph of f is

f/(_2) = - (_2)2

1
4
When z = 1, the slope of the graph of f is

, B 1
i) = e

= -1

Thus, at the point (—2,—1/2) the slope of the graph of f is —1/4, and at the point (1,1) the
slope of the graph of f is —1. These results are illustrated in Figure

Yy Yy
1 A
4 —{=
-
3
2
1
-4 -3 -2 -1
-1
1 . .
Figure 4.7: The graph of f(x) = ~ is plotted Figure 4.8: Tangent lines at (—2,—1/2) and
x 1 (1,1) are plotted in blue.
in black, and its derivative f'(z) = —— is
x

plotted in red.

The results of the previous example are displayed in Figure Remember that the height of
the graph of f’ (in red) is equal to the slope of the graph of f at each z-value. Study the graph
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carefully, and make use of the dashed lines. Do the various values (height of f’ and slope of f)
seem to match up? The tangent lines at the two given points are sketched to help you read off the
slopes of the graph of f at the given points.

Notice that the calculation of the derivative in the previous example followed exactly the same
procedure introduced earlier in the chapter for determining the slope of a curve. The language we
are now using is a little different, and the procedure is a bit more formal, but exactly the same
ideas are being used.

Now let’s have one more example.

EXAMPLE 6
Determining a derivative formula

(a) Determine the slope of the graph of the function f(z) = +/x at the point A(a,/a).

(b) Use the result of Part (a) to determine the slope of the graph of f at the points (1,1) and
(4,2).

SOLUTION

(a) The instruction tells us to determine a formula for the derivative function, f’(z). Let’s apply
the definition of the derivative.

fla+h) - f(a)

flla) = lim h
R

As usual, the next step is to cancel a factor of h in numerator and denominator. However, there
is no factor of h in the numerator. The standard trick in this situation (when dealing with a
difference of square-root expressions) is to rationalize the numerator. This means to multiply
numerator and denominator by the conjugate of the square root expression, and then simplify:

fla) = lim va+h—+a va+h+ya
h—0 h Va+h+y/a
Fla) = lim [Va+h—+a] [Va+h+/a
YT S h[Va+h+a)
a+h—+vava+h+ava+h—a

flo) = jim W VaTht vl
, ~ lim a+h—a

flla) = ,Hoh[\/ﬁjﬂf]

fla) = "

I
hg%h[\/a—l—h—&-\/a]
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Now we can divide the numerator and denominator both by h, as usual, provided that h # 0:

1
/ .
a) = lim ———
fla) = fim Va+h++/a
Finally we are in position to evaluate the limit. As usual, we ask ourselves what happens to the
expression as h gets closer and closer to 0. In this case, the result is

/ 1 1
fa) = i eh+va
f’(a) — ;
Vot va
fla) = =

2va

If we wish to express the result in terms of z, we could just as well write the derivative formula
as

o = 5
1o = 55
r = 3

When x = 4, the slope of the graph of f is

fa) = 2;1
f) = 2(12)
ra = 3

Thus, at the point (1,1) the slope of the graph of f is 1/2, and at the point (4, 2) the slope of
the graph of f is 1/4.

The results of the previous example are displayed in Figure Remember that the height of
the graph of f’ (in red) is equal to the slope of the graph of f at each x-value. Study the graph
carefully, and make use of the dashed lines. Do the various values (height of f’ and slope of f)
seem to match up? The tangent lines at the two given points are sketched to help you read off the
slopes of the graph of f at the given points.

In the next section, we’ll develop our skills in calculating limits in general.
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3 flx)=vx 3 flx) = vz

(4,2)
2 2 ‘
! Fa-ge 1N -
e 75 1 G

> - . | -

" 1 2 3 4 ) 6 7 v 1 2 3 4 ) 6 7
Figure 4.9: The graph of f(x) = \/x is plot- Figure 4.10: Tangent lines at (1, 1) and (4, 2)

ted in black, and its derivative f'(z) = —= are plotted in blue.

2Vx

is plotted in red.

EXERCISES

(Answers at end.)

One purpose of this exercise is to practice using the definition of the derivative to calculate
derivatives of some simple functions. That is, this is practice in algebraic manipulations in the
context of limits. Another purpose of this exercise is to strengthen your understanding of the
geometric connection between a function and its derivative.

Use the definition of derivative to determine the derivative formulas for a variety of power func-
tions, polynomial functions, rational functions, and functions involving square roots. Tabulate
your results. Do you notice any interesting patterns?

Once you have determined a derivative formula for each function, evaluate the derivative formula
at various values of the domain. Then plot both the original function and its derivative on the
same set of axes. Sketch small segments of tangent lines at your selected values of the domain,
and check for yourself that the height of the derivative function matches with the slope of the
original function at these points.

Answers: There may be a resistance on the part of some students to tackle such an open-ended task. However, it is
very worth doing. Do whatever is needed to encourage yourself to do this exercise seriously and compile the results.
Check your results by using your favourite graphing software, such as https://www.desmos.com/calculatorl

SUMMARY

In this section we used the definition of the derivative to calculate the slope formula for a number
of graphs. In effect, we calculated formulas for the derivative functions for a number of functions.
We also explored the geometric connection between a function and its derivative.

Calculating a derivative is one of the most important processes in calculus. The derivative
function represents the rate of change of the function.

Having seen the importance of limits in derivative calculations, in the following sections we’ll
devote attention to developing our skills in calculating limits.



https://www.desmos.com/calculator
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Chapter 5

Limits in General

OVERVIEW

In this section you’ll improve your skill in evaluating limits. At this point in our studies, there
are two main purposes for calculating a limit:

e to determine the slope of a curve (this is using the definition of the derivative)

e to understand the behaviour of a function in certain situations

In the previous sections, our primary aim was to understand the idea behind how to calculate
the slope of a curve. This required us to introduce the concept of the limit. Since limits form
the current foundation of calculus (many important concepts, including the derivative, and the
integral, which you will learn about in Chapter ??, are defined in terms of limits), we’ll now focus
on improving your skill in evaluating limits.

Besides their use in calculating slopes of curves, limits are also useful for understanding the
behaviour of a function near certain key points on its graph. For example, we might wish to
understand how a function behaves near an asymptote, or near a value for which it is not defined,
or near a value for which the function’s behaviour has a sudden change, or its behaviour for values
that are very large, either positively or negatively.

Notice that none of the purposes for limits mentioned in the previous sentence have anything
to do with slope. Nevertheless, calculating the slope of a curve is one of the primary purposes of
limits. This puts us in a bit of a difficult position. Recall that in using a limit of the following form
to calculate a slope,

z+h)— f(z
o Jah) = f(@)

h—0 h

it makes no sense to substitute 0 for h in the expression, because then we would be dividing by
0, which is undefined. This means that however we formally define a limit, we will not be able to
count on the definition to include substituting a value to determine the limit.

However, in all of the limit calculations we’ve done so far, we have simplified the rise-over-run
quotient until there is no A in the denominator, and then in effect we have substituted 0 for h in
order to evaluate the limit. So perhaps this idea can be used as part of a practical approach to
evaluating limits, but it seems that the formal definition of the limit cannot make reference to the
value of the expression at the point in question, because in applying limits to the calculation of the
slope of a curve, there will be no function value there.

These considerations make understanding limits difficult for many newcomers to calculus. Par-
ticularly when dealing with continuous functions, many newcomers can’t understand why we have
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to go through such contortions to calculate a limit—why don’t we just substitute a value into the
expression for the function? I hope the discussion of the previous several paragraphs has begun to
clarify the reason. However, let’s look at some examples, in hopes that they will further clarify the
issue.

Recall the very. first slope calculation we did, earlier in this chapter. We calculated the slope of
the graph of y = % +1 at the point A(1,1.25). The relevant diagrams are reproduced in Figure
and Figure |5.2

x
=—+41
Y= +
) m
A A
(1+h)?
1 ,,,,,,,,,,,,,,
1 +
m = 0.5+
1.25 1------- ‘ |
B l l . B / ‘ h
1 1+h
4 Y
Figure 5.1: The secant line AP is used in an Figure 5.2: The graph shows the values of
algebraic calculation of the slope of the curve the slgpes of secant lines AP to the graph of
at A. The absolute value of h is the distance y = - +1 as a function of h, which indicates
between the xz-coordinates of A and P. the position of the point P.

Recall our argument about the slope of the graph of y = %—H at the point A(1,1.25). Figure
displays all of the estimates of the slope of the curve at A, for various positions of the approximating
secant line AP. We argued that all of the estimates for A > 0, shown in Figure [5.2] as values that
are greater than 0.5, are overestimates. Also, all of the estimates for h < 0, shown in Figure [5.2| as
values that are less than 0.5, are underestimates. Thus, the true value of the slope of the curve at
A can only be the y-value of the hole in the graph in Figure that is, the true value of the slope
of the curve at A is 0.5.

If you understand the argument of the previous paragraph, you can see that although it is not
valid to substitute 0 for h in the formula m = 0.5+ h/4, nevertheless doing so results in the correct
value for the slope of the curve at A!

Because substituting a value into a formula is so much easier than going through intricate
reasoning, it would be nice if we could come up with criteria for when substituting a value gives
the correct result. It is possible; first we’ll state the ideas, then we’ll illustrate them with examples.
(Purists will note that typical developments of limits start with proper definitions of limits, then
define continuity in terms of limits, then develop rules for working with limits. Our approach here
is opposite, where we performed some concrete limit calculations after discussing the concept of a
limit, now we will write down a few practical rules, and we will save the logical development of the
subject for the end of this chapter.)

NS
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A Practical Approach to Calculating Limits

1. If the function f is continuous at z = a (that is, there are no breaks, holes, or jumps in
the graph of f at # = a), then the limit of f as x approaches a can be obtained by simply
substituting the value a for x in the formula for f. That is,

lim £(z) = (o)

2. If f has a “hole” discontinuity at x = a, then the limit of f as x approaches a can be

obtained by “filling in the hole.” That is, algebraically manipulate the expression for f (if

possible) so that it is acceptable to substitute a for z; then evaluate the resulting formula
for = a to obtain the limit.

3. If f has a “jump” discontinuity at x = a, then

lim f(z) = DOES NOT EXIST

Tr—a

4. In more complex situations, one may have to use more powerful means: limit laws (discussed
in theory sections towards the end of this chapter), the squeeze theorem, or other theorems.

5. If the situation is still unclear, the last resort is to use the precise definition of the limit,
discussed later in this chapter. This is the gold standard, and the fail-safe method.

S .

T TN e N
‘ N\ A N\
! 4 , 4 I 4

Figure 5.3: The three functions are slightly different, but for each function, the limit of the function
as x approaches 4 is 2. The point is that whether the function has a value at x = 4, and what the
value is if the function does have a value, has no bearing on the existence and value of the limit of
the function as x — 4.

Consider the three functions graphed in Figure In the first frame, the function is continuous
at x = 4, and so the value of the limit of the function as x approaches 4 is 2. In the second frame, the
function has a hole discontinuity at z = 4; nevertheless, the limit of the function as x approaches 4
is also 2. If you treat the function as a hillside, and imagine walking along it, then as you approach
x = 4, either from the right or from the left, your height along the hillside is getting closer and
closer to 2. Exactly the same argument results in the same conclusion about the function in the
third frame. Even though the value of the function in the third frame at x = 4 is 4.5, the limit of
the function as x approaches 4 is 2.

The discussion of the functions in Figure teaches us that the limit of a function is not
necessarily the value of the function; indeed, the function may not have a value at the point of
interest.

Now let’s look at a few examples of using the practical approach to calculating limits.
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EXAMPLE 7

Calculating the limit of a function at a point of continuity

For the function f(z) = 22 + 1, calculate

lim f(x)

rz—1

SOLUTION

Recall from your study of quadratic functions in high school that the function f is continuous
for all real values of x. Thus, we can use Step 1 in the practical approach to evaluating limits:
Just substitute the given value of x into the formula for the function:

lirri flx) = f(Q) (because f is continuous at z = 1)
T—

= 1°+1

= 2

flx)=2%+1

\

4

Figure 5.4: For a continuous function, the limit of the function as x — a is the value of the function
at x = a; that is, lim,_, f(x) = f(a). For the function illustrated here, lim,_,; f(z) = f(1) = 2.

Let’s discuss the calculation in the previous example; refer to Figure Remember, this limit
has nothing to do with slopes; the limit in this example represents the trend of the heights (i.e.,
the function values) of the function graph as x gets closer and closer to 1, either from the left or
the right. This “trend” interpretation of limit can be illustrated by a table of values; see Table

Table 5.1:
x flx)=22+1 x flz)=22+1
0.1 1.01 1.9 3.801
0.5 1.25 1.5 3.25
0.9 1.81 1.1 2.21
0.99 1.9801 1.01 2.0201
0.999 | 1.998001 1.001 | 2.002001
0.9999 | 1.99980001 1.0001 | 2.00020001




o1

The two columns on the left of Table show the trend of the function values as x approaches
1 from the left. The two columns on the right of Table show the trend of the function values
as x approaches 1 from the right. It appears as if the function values get closer and closer to 2 as
x approaches 1 from both left and right. This supports the calculation of the previous example.

EXAMPLE 8

Calculating the limit of a function at a point of continuity

1
For the function f(z) = —, calculate
x

lim f(x)

z—2

SOLUTION

This function is continuous at x = 2, as you can see from the graph in Figure [5.5] Thus, we
can use Step 1 evaluate the limit by substituting the given value of x into the formula for the
function:

~

lim f(z) =

(2) (because f is continuous at z = 2)
T—2

| =

4

Figure 5.5: Because f is continuous at z = 2, the limit of f as  — 2 is the value of the function
at x = 2; i.e., limy o f(z) = f(2) = % The fact that f is not continuous at x = 0 is irrelevant,

because at the point of interest (i.e., x = 2) f is continuous.

1
To repeat, the fact that the function f(z) = — is not continuous at = 0 is irrelevant when

calculating the limit of the function as x approaches 2, because the function f is continuous at
T =2.
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How can one know for certain whether a function is continuous or not? Sketching a graph is
not always trustworthy, because we may miss key points if we sketch the graph by hand or using
a computer or graphing calculator. The following theorem will be helpful. (For a proof of the
theorem, see the logical development of limits towards the end of the chapter.)

THEOREM 1

List of types of continuous functions

e The following types of functions are continuous for all z-values for which they are defined:
polynomial, rational, power (where the exponent may be any real number), trigonometric,
inverse trigonometric, exponential, logarithmic, and hyperbolic functions.

e Algebraic combinations of continuous functions (addition, subtraction, scalar multiples,
multiplication, division, and composition) are also continuous wherever they are defined.

Let’s discuss the previous theorem. What the first part says is that functions such as y =

2
-2 )
3zt — 222 4 0.7, y = %, y = x7 3?2

y = cosh x are continuous wherever they are defined. The second part of the theorem says that if
you combine functions such as these using any of the algebraic operations listed, then the resulting
function is also continuous wherever it is defined. This means that the following functions, for
sinx
2+ 1’

,y =sinz, y = tan"lz, y = 5%, y = logyx, and

example, are continuous wherever they are defined: y = x+2sinz, y = y=3Ilnz—2cosz,

and so on.

Some functions are continuous for all values of € R. Examples are all polynomials, y = sin z,
y =cosz, y = k% (where k is any positive real number), and many others.
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EXAMPLE 9
Calculating the limit of a function at a point of continuity

Calculate each limit.

2 — 4 2%+ —
(a) lim =374 (b) lim 22+ % =0
z—0 Ccos T z—3 T+ 2
SOLUTION
2?2 -3z +4
(a) The function ———————— is an algebraic combination of continuous functions, so the function

oS
is continuous wherever it is defined. The function is defined at x = 0, so the limit can be
calculated by substitution.

. 22 —3x+4 02 —3(0) + 4
lim =
z—0 CoS T cos 0
4
1
= 4
22+ —6

(b) The function T3 is an algebraic combination of continuous functions, so the function
x

is continuous wherever it is defined. The function is defined at = 3, so the limit can be
calculated by substitution.

. 222 +2—6 2(3)2+3-6
lim =
r—3 T+ 2 3+2
15
= 3

Next, let’s look at limit calculations at points where a function is not continuous.
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EXAMPLE 10

Calculating the limit of a function at a point of discontinuity

2
. % +3x+2
For the function f(x) = ——————, calculate
z+1

lim f(z)

z——1
SOLUTION
The function f is not continuous at = —1, so we can’t evaluate this limit by substitution. (We
know the function is not continuous at & = —1 because it’s not even defined there.)
However, notice that both the numerator and denominator equal 0 when x = —1; this is remi-

niscent of the derivative calculations we have done. There, we simplified the expression until we
could cancel a factor of h from both numerator and denominator; then we could determine the
limit. Perhaps a similar strategy will work here.

Notice that (z + 1) must be a factor of the numerator, because substituting z = —1 into the
numerator results in 0 (this is the factor theorem from high school). Therefore,

2
e+ 3z + 2
li = lim ———
Jm S = lim o
1 2
L @D+
z——1 r+1
= liml(x +2) (cancelling the (x + 1) factors)
T——
= —1+2
=1
2
3x+2
Consider the graph of f(z) = % in Figure Notice that the function has a hole
x
discontinuity at x = —1, and yet the limit of the function is just the value that the function would
have at © = —1 if it were continuous. In effect, you fill in the hole to calculate the limit.

Also notice that the graph of f is almost identical to the graph of y = x + 2, an expression that
appears towards the end of the limit calculation. The only difference is that f is not defined at
x = —1 (the graph has a hole discontinuity there), and y = = + 2 is continuous at z = —1; in other
words, for the function y = x + 2, the hole has been filled in.

The last few steps in the example, where we just substituted x = —1 once we had cancelled
the troublesome factors of (z + 1), requires some thought and reasoning. However, it’s the same
reasoning we’ve been through quite a few times already. As x approaches —1 from the left, the
function values get closer and closer to 1. Similarly, as  approaches —1 from the right, the function
values also get closer and closer to 1. Thinking of a limit in terms of the trend in function values
supports the calculation done in the example. You could also get your calculator out and construct
a table of values for further support; see Table

The two columns on the left of Table show the trend of the function values as = approaches
—1 from the left. The two columns on the right of Table show the trend of the function values
as x approaches —1 from the right.
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Figure 5.6: To calculate the limit of a function that has a hole discontinuity, “fill in the hole.” In

. . 22+ 3x+2 . r+1)(x+2 .
this case, lim,_,_1 ol = limg,_,_1 (x)—ifl) =lim,, 1(x+2)=-1+2=1.
Table 5.2:
22+ 3z +2 22 + 37 +2
: ="y | |” o= 51—
-2 0 0 2
—1.5 0.5 —0.5 1.5
—1.1 0.9 —0.9 1.1
—1.01 0.99 —0.99 1.01
—1.001 0.999 —0.999 1.001
—1.0001 | 0.9999 —0.9999 | 1.0001

Tables of values may give us some support for the result in the example, but ultimately they
prove nothing. It is the reasoning that provides the proof; but even the reasoning that we have
presented so far in the chapter, while good, is not iron-clad. If you are still skeptical about the
results, please study the formal definition of the limit (in Section[10)), and learn how to do the proofs.
That is the gold standard in the theory of limits, and should assuage any remaining doubtsE]

Maybe doubts will still remain; in that case, maybe you are ready to make the next big development in the theory

of calculus!
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EXAMPLE 11
Calculating the limit of a rational function

Calculate each limit:

z—=4 . — 3 (b)alcl—rgl xr—4

SOLUTION

(a) Since the function is an algebraic combination of continuous functions, it is contin-

uous at « = 4, provided it is defined there. So we try to substitute x = 4 into the expression,
and find that indeed the function has a value at x = 4. Therefore, the limit can be calculated
by substitution:

lim\F_2 = V-2
x4 T — 3 4—-3
2-2

1
= 0

(b) We start off with the same reasoning as in part (a): Since the function is an algebraic

combination of continuous functions, it is continuous at z = 4, provided it?: is defined there. So
we try to substitute x = 4 into the expression, but this time we find that the denominator is 0,
so the function is not defined at x = 4, and thus not continuous at x = 4. Therefore, the limit
cannot be calculated by substitution. So we move on to Step 2 in the practical approach to
calculating limits: Try to algebraically simplify the expression and cancel a troublesome factor
in the numerator and denominator. (We have some hope that this might work because the
numerator is also 0 when z = 4.) Because we have a square-root expression in the numerator,
the usual trick here is to multiply numerator and denominator by the conjugate expression[]
lim Vo =2 = lim Vo =2 X Vo +2
z—4 x—4 z—4 1T —4 \/E+2

L VE-9)(/E+Y)
oo (2 - D(VT +2)
. rx—4
- e 00E+D
. 1
},-1551\/5+2
1
Va+2
1

+2

(cancelling the troublesome factors of (x — 4))

== N

“You'll recall we have seen this trick before, when we calculated the derivative of a square root function.
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Notice the key steps in the strategy of solving part (b) of the previous example:

Strategy for evaluating the limit of a ratio of functions that has a hole discontinuity:
e Begin by trying to evaluate the limit by substitution; notice that 0 is obtained in both
numerator and denominator.

e Algebraically simplify until you can cancel a troublesome factor in both numerator and
denominator.

e Since the result is a function that is continuous, evaluate its limit by substitution.

e Argue that the original function must have had a hole discontinuity, so the limit of the
continuous function late in the solution must be equal to the limit of the original function.

~

—
8

~
|

Y

Figure 5.7: This function is continuous at Figure 5.8: This function has a hole disconti-

x = 4, so its limit as x — 4 can be calculated nuity at « = 4; one can algebraically simplify

by substitution. to evaluate the limit. (Note that the scale on
the vertical axis is stretched compared to the
horizontal axis.)

We can verify that the original function in part (b) of the previous example indeed has a hole
discontinuity by graphing; see Figure Compare its graph to the graph of the function in part
(a), given in Figure Note the vertical asymptote in the graph for part (a); even though the
function is not continuous at x = 3, it is of no concern. The fact that the graph is continuous at
the point of interest, x = 4, allows us to evaluate the limit as x approaches 4 by substitution.
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Now let’s suppose we wish to determine the following limit:

sinx
lim
z—0 X

We can use the same reasoning as in the previous examples. Start by recognizing that this function
is an algebraic combination of continuous functions, and so is continuous wherever it is defined.
This suggests substituting 0 for z to attempt to evaluate the limit. However, the denominator is 0
when & = 0, which means that the function is not defined at x = 0, and therefore not continuous
there. This means that we can’t evaluate the limit by substitution.

However, both numerator and denominator are 0 when x = 0. This fits the pattern of the
previous examples, where we were able to algebraically manipulate the numerator and denominator,
cancel a troublesome factor, and then evaluate the limit by substitution. This gives us some hope
that maybe a similar technique will work here, but unfortunately there seems to be no algebraic
simplification that helps with this limit.

It’s difficult to see how to proceed here. Perhaps it might help to produce a table of values.
Should we set our calculator to degrees or radians? That’s not clear either, so let’s try both.
Calculations for = in degrees are in Table [5.3], and calculations for x in radians are in Table

. . . sinx o
Table 5.3: Numerical calculations for lim, g ——, where x is in degrees.
T

. Fla) = 812:[; . @) = sinx
-1 0.034899 1 0.034899

—0.5 0.034905 0.5 0.034905

—0.1 0.0349065 0.1 0.0349065
—0.01 | 0.03490658433 0.01 | 0.03490658433
—0.001 | 0.03490658503 0.001 | 0.03490658503

. . . sinx L .
Table 5.4: Numerical calculations for lim, .o ——, where x is in radians.
x

. Fz) = 81233 - Flz) = sinx
-1 0.841471 1 0.841471
-0.5 0.958851 0.5 0.958851
—0.1 0.998334 0.1 0.998334
—0.01 | 0.999983 0.01 | 0.999983
—0.001 | 0.99999983 0.001 | 0.99999983

i
Notice from the tables that the values for e

are repeated for negative and positive values

sin x

of x; this makes sense because is an even function (which follows because both y = = and

sinx
y = sinz are odd functions). You can verify this as follows, using f(z) =

; to prove that f is
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an even function, we must show that f(—xz) = f(z).

floa) = T
fler) = 222
ooy =
flx) = f)

This proves that is an even function. Too bad we didn’t notice this before we constructed

X
the tables, as it would have saved us half the work!

Now what can we conclude from the numerical calculations in the tables? Let’s look at the
table in degrees first. Notice that coming from the left, or coming from the right, it seems that
we approach a similar number. However, it’s not clear whether either of the sets of numbers
represents overestimates or underestimates; in the absence of such an understanding, we have no
way of knowing what the limit is (assuming it exists, which it might not), and we can’t even say
it’s definitely between two numbers. The best we can do is to say that if the limit exists, it might
be near 0.0349, but we can’t be sure.

Similar considerations apply to the table in radians. It seems that the limit is close to 1, if it
exists, but how can we be sure?

sinx
Perhaps a graph can help us understand the situation. Let’s look at the graph of y = .

But wait, this is not an easy graph to draw, particularly near x = 0. Perhaps we could made do by
just analyzing the graph of y = sinz, because that is a familiar graph. Is there a way of visualizing

values of 222 from the graph of y = sinx? If so, how?
x
:% f(.ZE) =sinx ?‘/ f(:p) =sinx
sina f---2 — sina r----» ‘
| N |
« . - X < . @
Figure 5.9: The value of SIS the slope of Figure 5.10: It appears that as a — 0, the

a

the secant line joining (0,0) and (a,sina). slope of the secant line approaches the slope

of the tangent line to the graph of f(x) =
sinz at (0,0).

sinx

Observe from Figure that a value of , for = a, is the slope of a tangent line joining

(0,0) to (a,sina). Notice that the same secant line is suitable for two values of x, one positive and
one negative; this explains the matching numbers in Tables and Figure [5.9| shows a value
of a that is closer to 0. Can you see from the graph that as the value of x gets closer and closer to
0, from either the right or the left, that the slope of the secant line seems to get closer and closer
to the tangent line to the graph at (0,0)? Can this be true? How can we check this?

Let’s recall the definition of the derivative, and then use it to write an expression for the
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derivative of the function f(z) =sinx at (0,0).

Py = D1
POy = i 0TSO
) — m{(h);f@)
o) — %E}IBSTnh;&nO
1) = iy S

o -

The previous equation confirms what appeared to be true from the graph: the limit in question,

sinx
lim
z—0 X

represents the slope of the graph of f(x) = sinx at the point (0, 0)E| Based on this new insight, it
certainly seems as if the limit exists; the graph is nice and smooth at (0,0), and it appears that the
slope is about 1. This suggests that Table is most relevant, and it too suggests that the limit
might be about 1. However, none of this is conclusive; we can’t say for sure what the limit is, or
even that the limit exists.

We'll interrupt the discussion of this limit for the moment, and we’ll pick it up again in Chapter
3, where we’ll come up with convincing arguments that confirm that the limit really is 1. In the
mean time, you might think about the mysterious numbers in Table and what they mean. That
mystery will also be cleared up in Chapter 3.

As an overall conclusion for this section, this way of thinking about a limit—as a sort of “trend”
in the values of a function as the z-values change—is good enough for relatively simple situations.
However, it can only take us so far; for more complex situations, more subtle and powerful means
will be necessary, as we saw in the discussion of the previous example. We’ll continue to develop
more powerful means for evaluating limits in the rest of this chapter, and also later in the textbook.

Also note that most books take the logical approach (which is not necessarily the best approach
for learning, nor is it necessarily the practical approach that is most commonly used by practitioners
for actually calculating limits). For instance, consider our practical recommendation to evaluate
a limit by substitution if the function is continuous. Most books take that as the definition of
continuity, as we shall also do, once we get around to it. The approach in this book is practical,
concrete calculations first, logical development and theory later.

2Remember Mr. Shakespeare’s poetry about a rose by any other name smelling as sweetly. Whether we say
sina . sin h . .
, or limp o 5 all three expressions represent exactly the same thing.
a

. sinx .
limg 0 , or limg 0
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EXERCISES

(Answers at end.)

Determine each limit. Sketch a graph of the function to check graphically whether your limit
calculation is correct.

1 _
1. lim 5 lim L3
z—3x — 2 =31 — 2
3. lim " 4. lim (22— 3z +5)
T—T X z——1
2 2
—4 -4
5. Lim 2 6. lim =
=0 .+ 2 z—=—2 xr+2
2_y 2_4
7 limng 8 limx
IHO$—2 :EHQ:E—Q
. r—9 . r—9
9. lim —=—3 10. ig%f—3
2 2 _
1. Tim &Y 12, Tim &Y
=3 ¢+ 4 z—2 x+4
2 2
13, lim — 14. lim =
x—0 I r—3 X
-1 -1
15. limﬁi 16. 1im‘/57
rx—4 x2—1 r—1 LU2—1
202 — 20 — 4 202 — 20 — 4
17.  lim 22— % 18. lim - — =~ *%
z—=-1 224+ 2x—6 =2 24+ —6
3 3
. x> —Tx +6 . x> —T7x+ 6
19. ilgﬁa:?’—QxQ—x—}—Q 20. i%$3—2x2—x+2

Answers: 1. 1; 2. 0; 3.0; 4.9; 5 —2; 6. —4; 7.2; 8 4; 9.5 10.6; 11.0; 12. —5/6;
13. 0; 14. 3; 15. 1/15; 16. 1/4; 17. 0; 18. 6/5; 19. 2; 20. 5/3

SUMMARY

This section presented a practical strategy for determining some limits, and provided opportu-
nities for you to practice this skill. The concept of a continuous function was introduced, and a
theorem about which functions are continuous was stated. For a function that is continuous at
x = a, one can evaluate the limit of the function as x — a by substituting a for x into the formula
for the function. For a function that has a hole discontinuity at x = a, one can evaluate the limit
of the function as x — a by “filling in the hole.” Not all limits can be effectively evaluated using
these techniques; we’ll learn about how to tackle other limits later.
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HISTORY
Ghosts of Departed Quantities

Calculus was developed by many workers, and their incremental progress was independently
systematized by Newton and Leibnitz in the late 1600s. At that time the concept of limit had
not been devised yet, and even the concept of a function was still in development, and there was
not yet a precise definition of a function. The term “function” appears to have been introduced
by Leibnitz in 1673. Thus, calculus was developed in its early days by discussing “variable
quantities,” which we would nowadays call variables, and the currently-accepted definition of a
function was not formulated until the late 1800s, as was the currently-accepted definition of a
limit. Place yourself in the shoes of Newton and Leibnitz in the late 1600s, then, striving to
make sense of their newly-created systems without having adequately precise definitions to work
with. They were like searchers groping in a dark cave, possessing some very unusual night-vision
goggles, and yet not quite able to see clearly. In this light, their progress appears all the more
remarkable.

To make sense of calculus, Newton and Leibnitz thought in terms of infinitesimals. (d’Alembert
was the first to think of a derivative in terms of limits in the 1700s.) They conceived of an
infinitesimal number as a number that is smaller in magnitude than any real number, but not
yet zero. It should be emphasized that there is no such real number! This point was made
forcefully by George Berkeley in his 1734 book The Analyst, which was subtitled:

A Discourse Addressed to an Infidel Mathematician: Wherein It Is Examined
Whether the Object, Principles, and Inferences of the Modern Analysis Are More
Distinctly Conceived, or More Evidently Deduced, Than Religious Mysteries and
Points of Faith. “First Cast the Beam Out of Thine Own Eye; and Then Shalt Thou
See Clearly to Cast Out the Mote Out of Thy Brother’s Eye.”

Berkeley had earlier attacked “free-thinkers” in response to their attacks on Christianity. Sir
Edmund Halley, a noted free-thinker and devotee of Newton, mocked Berkeley’s attacks, and
apparently a sick friend of Berkeley’s had refused Berkeley’s “spiritual consolation, because
Halley had convinced the friend of the untenable nature of Christian doctrine.” (See page 470
of Boyer’'s A History of Mathematics.) It is speculated that “The Infidel Mathematician” in
Berkeley’s subtitle is Halley, and that the book was a response to Halley. (It is doubtful that
the devoutly religious Newton was Berkeley’s target.)

On the one hand, “Can’t we all just get along?” and on the other hand, Berkeley’s criticisms
about the foundations of calculus were on point. Berkeley did not dispute that the results of
calculus were valid (their applications in astronomy by Newton and others had been empirically
supported), he simply, and correctly, pointed out that the reasoning that produced these valid
results was dodgy. In Berkeley’s words (fluxions were Newton’s version of infinitesimals),

And what are these fluxions? The velocities of evanescent increments. And what are
these same evanescent increments? They are neither finite quantities, nor quantities
infinitely small, nor yet nothing. May we not call them ghosts of departed quantities?

The last sentence is pretty biting, but Berkeley had a point. You can’t say some quantity has
been incremented (the h in our limit arguments), then divide by this quantity as if it were non-
zero, and then later suppose that this quantity is ignorable (i.e., zero), without some careful
justification. We have tried to provide such careful argumentation, rough though it be, but
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Newton and his contemporaries did not quite do the job. But let’s not be critical of them; it
took two centuries of hard work by many very bright researchers to finally figure this out to
the general satisfaction of the community. Better, more precise, argumentation is found in the
theory sections towards the end of this chapter.

The moral of this story is that creative mathematicians come up with all kinds of interesting
ideas, many of which are practical and some of which are even revolutionary. But it is too much
to ask of any one person, or even of any one generation of workers, to tidy up every loose end in
these new fields of mathematics. The tidying-up process is also creative, but in a different sense;
logic comes to the fore in the tidying-up process. Once a field is mature, then clear definitions
and axioms are identified, and theorems are derived in a coherent, systematic way from the
foundations. Calculus is by now a very mature field of mathematics, and if you dig more deeply
into the subject you will be able to study its foundations to your heart’s content. But when
first learning a subject, it is beneficial to focus on numerous examples to internalize the main
concepts, problems, and methods, and to save a deeper consideration of foundational issues for
later study.
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Chapter 6

Right Limits and Left Limits

OVERVIEW

The concepts of right limit and left limit are introduced and related to the previously developed
concept of limit. These so-called “one-sided limits” are useful in studying the behaviour of
functions, particularly near points of discontinuity and near asymptotes.

So far in this chapter we have performed quite a number of limit calculations. From the
perspective of the “trend” aspect of a limit, we’ve considered what the trend in the function values
is as x approaches a certain number. To be more specific, we looked at the trend as x approaches
a certain number both from the left and from the right.

The following definition formalizes the idea of looking at the trends from the left and right
separately.

DEFINITION 2
Left and right limits

e The left limit of f as x approaches a exists and is equal to the number L, that is
lim, ,,~ f(z) = L, provided that the function values of f get closer and closer to L as
x gets closer and closer to a but z < a.

e The right limit of f as x approaches a exists and is equal to the number L, that is
lim,_,,+ f(x) = L, provided that the function values of f get closer and closer to L as
x gets closer and closer to a but z > a

Informally, the left limit of f as x approaches a means the trend of the function values as x
approaches a from the left (that is, for values of x that are less than a). Similarly, the right limit of
f as x approaches a means the trend of the function values as x approaches a from the right (that
is, for values of x that are greater than a).

Why would we wish to define left and right limits? Well, there are some functions for which the
trend in function values when you approach some z-value from the left is different from the trend
in function values when you approach from the right. In this case, we say that the limit does not
exist, but nevertheless, it is often of value to understand the trends in each direction.

65
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THEOREM 2

Characterization of a limit in terms of left and right limits

e Part 1: If lim, ., f(z) = L and lim,_,,+ f(x) = L, then lim,_,, f(z) = L.
e Part 2: If either lim, ,,— f(x) or lim, ,,+ f(x) do not exist, or if they both exist but
lim,_,,- f(z) # lim,_,,+ f(x), then lim,_,, f(x) does not exist.

The first part of the theorem states formally what we have been doing all along when calculating
limits: We look at the trends from each direction, and if they both exist and are equal, then we
say the limit exists. The second part of the theorem adds new information: if the trends from each
direction are not equal, or if either does not exist, then we say that the limit does not exist.

What sort of function would have left and right limits unequal? Here is one example.
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EXAMPLE 12
A function for which the left and right limits at a point are not equal

Determine the limit

lim m
z—0 X
SOLUTION 1
Since the function f(z) = [zl is not defined for x = 0, we won’t be able to evaluate this limit by
x

sinz
substitution. The function f is similar in structure to the function ——, whose limit we studied
x
in the previous section. Why don’t we use the same method of analysis: Rather than try to

x
sketch the function lim, g u directly, let’s consider the slope of the function y = |z | at z = 0.
x

That is, consider the secant line joining the points (a, f(a)) and (0,0) on the graph of f. The
slope of the secant line is

f(@) 0 _ f(a)

a—0 a

slope of secant line =

which is exactly the expression of which we wish to determine the limit.

So what is the trend of the values of the slope of the secant line as a — 07 Well, if ¢ > 0, we can
see from the graph in Figure that the slope is 1, no matter what the value of a is. Similarly,
if a < 0, we can see from the graph that the slope of the secant line is —1, no matter what the
value of @ is. This information is recorded in Figure [6.2

Thus, because

lim m =1 and lim m =-1
=0t X z—0— T
this means that
lim m # lim m
=0t X z—=0— T
It follows that
lim m DOES NOT EXIST
x—0 X

SOLUTION 2

An alternative solution is purely algebraic, and does not rely on the graphs. (However, you can
see that the essence of this solution is the same as the essence of the first solution.)

Recall that
2] = z if x>0
Tl —z if z<0

Thus, to calculate the left and right limits of f, replace | x| by the appropriate simpler (i.e.,
without absolute values signs) expression depending on whether x > 0 or z < 0. That is:
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|z | z
Iim — = lim —
z—0t X z—0t T
= lim 1
z—07t
= 1
and
lim m = lim -t
x—0—- X x—0— T
= lim -1
x—0~
= -1
Because
lim Ed # lim m
=0t X z—0— T
it follows that
lim m DOES NOT EXIST
z—0 X
Y Y
f(x) =z
1y — 121
fw) =1
1
« -z « -
-1

Figure 6.1: To calculate lim,_,¢ |z |/ think
in terms of the slope of the secant line joining
(0,0) to another point on the graph of y =
| = |. What happens to the slope of the secant
line as x — 07

In the previous example, notice that the

Figure 6.2: It turns out that this function is
the derivative of the one in the figure on the
left; see the text for details.

algebraic Solution 2 is faster than Solution 1, but the

geometric reasoning in Solution 1 gives us insight into why the limit does not exist. Both solutions
are of value, and its worthwhile studying them together until you understand that their essence is

the same.

x
The following calculation confirms that the limit lim,_,q u is the derivative of the function
x
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f(x):\x]atm:()ﬂ

fla) = Jim h
FO) = i 10010
POy = i 10 IO
FO) = i P10
F0) = %L%Ihlh—O

1o = b

Since it doesn’t matter what symbol we use in place of h, it’s equally well true that

f/(0) = lim Iz

z—0 X

This justifies the geometric reasoning in Solution 1 of the previous example.

One of the conclusions we can draw from the previous example is that the derivative of the
function f(x) = | x| does not exist at x = 0. This is interesting new information, as we’ve now
experienced a function that is not differentiable at one point in its domain. We can see from the
graph the geometric reason for this: The graph has a sharp corner at (0,0). Another way to say
this is that it’s not possible to draw a tangent line to the graph at the corner point (0,0). We infer
that for a function to be differentiable at a point, its graph must be smooth at that point.

In general, functions for which their graphs have jump discontinuities at z = a have unequal
left and right limits as x approaches a. This was one of the prime motivations for introducing the
idea of left and right limits; so that we can analyze functions that have jump discontinuities, and
so we have a vocabulary for describing their behaviour at the point of discontinuity.

|z

17’1l let you confirm that the function = is the derivative of f at all other values of = as well.
x
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Figure 6.3: A function defined piecewise that has a jump discontinuity at z = 1: the function is
defined by f(z) =3 — (x —2)? for x > 1, and f(x) = z for z < 1.

EXAMPLE 13
Right limit and left limit for a function defined piecewise

Consider the function

f@:):{ 3—(x—2)% if x>1}

T if z<1

Determine lim f(x).
z—1

SOLUTION

Because the function is defined piecewise, and the pieces are separated just at the position where
the limit is required, it makes sense to use left and right limits. For the right limit, we use the
definition of the function towards the right of the position where the limit is required:

S @ = Jm G-
lim f(z) = 2

For the left limit, we use the definition of the function towards the left of the position where the
limit is required:
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lim f(z) = lim x
T—1~ T—1-
lim f(z) = 1
r—1~

Note that the left limit and the right limit were obtained by substitution. Does this make sense?
Write a few sentences to justify this.

The left and right limits are not equal, and so it follows that

lim f(z) DOES NOT EXIST
z—

A graph of the function f is shown in Figure Note from the graph that the function f has
a jump discontinuity at x = 1. It is possible to conclude this without looking at the graph, by
comparing the left and right limits of f at x = 1. Briefly explain.

EXERCISES

(Answers at end.)

1. Consider the function f defined by f(z) = { t , g i zg }

(a) Determine  lim f(z), lim f(z), lim f(x)
z—07F x—0~ xz—0

(b) Determine lilél+ f(z), lim f(x), lim f(x)

r—5~ T—5

2. For the previous exercise, sketch a graph of the function to check graphically whether your
limit calculations are correct. Classify each discontinuity as either a hole discontinuity or a jump
discontinuity. Explain briefly how you can determine the nature of the discontinuity from the
limit calculations.

3. Repeat the two previous exercises for the function

1 if >0
f(x):{—l if x<0}

Compare and contrast the results for the two functions.

Answers: 1.(a) 1, —1; does not exist; (b) 1, 1, 1;
2. Jump discontinuity at x = 0; this can be seen because the left and right limits are not equal at z = 0.

3. (a) 1, —1; does not exist; (b) 1, 1, 1; thereis a jump discontinuity at x = 0. The point is that the actual
value of the function at = 0 (which is different in the two cases) does not change the values of the various limits
at z = 0.

SUMMARY

One-sided limits were introduced in this section, and they were used to study the behaviour of
functions near points of discontinuity.
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Chapter 7

Continuity

OVERVIEW

This section presents the technical definition of a continuous function in terms of limits. The
concept of continuity is then used to develop the intermediate value theorem, an important tool
in solving equations.

Earlier in this chapter we have used an intuitive sense of continuity: A function is continuous if
its graph has no breaks or holes in it. One often reads that a function is continuous provided that
its graph can be sketched in one piece without lifting one’s pen from the paper.

This sense of continuity is good enough for many purposes, but like almost everything we learn,
it must be strengthened when moving on to advanced work. One of its deficiencies is that it relies
too much on a graphical sense for its definition; how do we tell if a function is continuous just
from the formula, if it is too difficult to sketch a very accurate graph? Another deficiency is that
this intuitive sense of continuity is just plain wrong if the domain of the function is not the real
numbers. If you move on to advanced work, you might be a little surprised to find out that any
function whatsoever whose domain is just the natural numbers is continuous, according to the
precise definition of continuity. Yet such a function certainly doesn’t look continuous, and can’t be
sketched without lifting one’s pen from the paper.

So how can we improve on the intuitive sense of continuity. As we saw earlier, if a function is
continuous at a point, the limit of the function as x approaches that point can be calculated by
substitution. The formal definition of continuity turns this around and adopts this property that
we have already used as the formal definition. This fits in with the general modern strategy of
defining all new concepts in calculus in terms of limits, wherever possible.

Here is the formal definition of continuity:

73
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DEFINITION 3
Continuous function

A function f is continuous at & = a provided that all of these conditions are satisfied:

o lim, ,, f(x) exists
e f(a) exists

o lim, ,, f(z) = f(a)

The first two conditions in the definition can be omitted if we agree that they are implicit
in the third condition, but they are included for clarity. Note that the first condition eliminates
the possibility of a jump discontinuity, and the second and third conditions together eliminate the
possibility of a hole discontinuity. If all three conditions are satisfied, then there can’t be either a
jump discontinuity or a hole discontinuity, so the function must be continuous at z = a.

It would be interesting and instructive to come up with a specific example (in the form of a
graph) for which just one of the conditions is violated, but the other two are satisfied. Try it!

If a function is continuous at each point in its domain, then we simply say that the function is
continuous.

Just because a function is continuous does not guarantee that it is differentiable. A good
example to keep in mind is one we encountered in the previous section; recall that the function
f(z) =| x| is continuous for all values of x, but is not differentiable at = = 0.

However, the opposite implication is true: If a function is differentiable at = a, then it is
guaranteed to be continuous at x = a. This is proved in the theory section towards the end of the
chapter.

It sometimes happens that one wishes to create a mathematical model by piecing together two
or more common types of functions. Such functions are said to be defined piecewise. Here is an
example:

2 .
e if x> -1
f(m)—{ r if v< -1 }

Notice from its graph in Figure that this function is not continuous at x = —1, although
it is continuous for every other value of . This is reasonable, because each piece is a part of a
continuous function, but the pieces don’t fit together at x = —1. You can verify this by calculating
the left and right limits of the function as x approaches —1:

li = lim 27
e =
= (1
= 1
and
lim f(z) = lim =z
rz——1" rz——1"
= -1

Since the left and right limits as * — —1 are not equal, the function f is not continuous at x = —1.
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e

A

Figure 7.1: A piecewise defined function that is not continuous at = —1: the function is defined
by f(z) = 22 for x > —1, and f(z) = z for z < —1.

Is it possible to modify the function z in a simple way to make it continuous? For instance, it
seems clear from the graph that by translating the linear piece of the graph upwards by 2 units,
the two pieces will fit together and the result will be a continuous function.

Let’s look at a few examples of how to solve a problem such as this when the answer is not so
apparent.
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EXAMPLE 14
Joining two functions to make a continuous functions

Determine a value of k such that the following function is continuous.
(z) = kz? if £ <2
P =L etk if 2> 2

SOLUTION 1

Except possibly at the point z = 2, each piece of the function g; is continuous at all other values
of z. In order that the function g; also be continuous at x = 2, the two pieces must fit together
at x = 2. In other words, they must have the same value at x = 2. That is,

ka? = x4k (at x = 2)

E(2%) 2+k
4k = 24k
3k = 2
o= 2

3

2
Thus, the function g; is continuous if and only if k = 3

DISCUSSION

Notice that in Solution 1 we substituted x = 2 into the expression x + k. However, this can be
criticized because the expression is only defined for > 2, so it’s not valid to substitute 2 for z.
One can argue against this criticism by saying, “OK, but we’ll just modify the definition of g;

as follows:
(z) = kx? if <2
N R A T > 2

See Figures and where the original and modified versions of g; are plotted for the sample
value k£ = 1. For this value of k, the graph of ¢g; is not continuous at x = 2, but the idea is
to modify the value of k in hopes that the two pieces of the function would join up at x = 2.
Because each piece of the graph is defined at z = 2, we are now justified in using the method of
Solution 1; however, this graph is no longer a function (if k # 2/3) because it has two y-values
at x = 2. However, once the two pieces of graph are joined up (that is, once we determine the
right value of k that will join the two pieces up), then there will be only one y-value at z = 2,
and so the resulting continuous graph will represent a function.

So it seems that our method ought to be acceptable. Nevertheless, some people might like a more
formal procedure, and most textbooks use a solution something along the lines of the following
one:

SOLUTION 2

The function g; will certainly be continuous at all values of z except = = 2, so we only need to
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worry about x = 2. In order for g; to be continuous at x = 2, the two pieces of graph must
match up. This means that the three conditions in the definition of a continuous function must
be satisfied by g1 at * = 2. Equivalently, we must show that there is a value of k for which
lim,_ 9+ g1(x), lim,_,o— g1(z), and g1(2) all exist and all have the same value.

Let’s calculate each one in turn. First, g1(2) = 2 4+ k. Next, let’s work out the limits. First the
right limit:

lim z) = lim z+k
r—2+ gl( ) z—2+
= 2+k

So far, so good. Finally, the left limit is

li = lim ka?

Ao = g ke
= k(2%
= 4k

The right limit and the value of the function at x = 2 are equal no matter what value of k is
chosen. However, in order for them also to be equal to the left limit, & must satisfy:

4k = 24k

3k = 2

ko= 2
3

2
Thus, ¢; is continuous for all values of x if and only if k& = 3

In the previous example, notice that the essentials of Solutions 1 and 2 are the same, although
those concerned about technicalities might prefer Solution 2.

e e
1 g1z p g1(x
4 4
3r------ : 3r------ ‘
-2 -1 1 2 3 -2 -1 1 2 3
A 4
Figure 7.2: The original definition of the Figure 7.3: The modified definition of g; is
function g; is g1(z) = ka? for x < 2, and no longer a function for the sample value k =
g1(z) = x + k for & > 2. The graph is plot- 1, because there are two y-values at z = 2.

ted using the sample value k = 1.
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EXAMPLE 15
Determining the value of a parameter to make a function continuous

Determine a value of k such that the following function is continuous.

(2) = ?+k if z<1
g2\T) = kx if x>1

SOLUTION

Using the same informal procedure as in Solution 1 of the previous example, we seek a value of k
that makes the two pieces of the graph join. This will occur provided we can choose k to satisfy

(1?2 +k= = k(1)
1+k =
1 =0

Since the last line is an inconsistent equation, no value of k can satisfy the condition and therefore
no value of k£ can be chosen to make the two pieces of graph join up. Thus, go is not continuous
at x = 1 for all values of k. (Of course, the function go is continuous for all other values of z.)

7.1 The Intermediate Value Theorem

One of the primary activities in mathematics is solving equations. But what do you do if you
run into a very complicated equation that you can’t immediately solve? Well, there are various
approximation methods, and some of these have been programmed into computer software, so that
it’s possible for a computer to chug through an iterative procedure to get a good approximation to
the solution.

One of the basic ideas that is used in some approximation schemes is as follows: Suppose that
for a continuous function f, f(a) < 0 and f(b) > 0. Then there must be at least one value of =
between a and b for WhichEI f(z) = 0. This means that if you can find such values a and b, then
you know for sure that there is at least one solution to the equation f(z) = 0 between a and b, so
you can get your computer to search for it in confidence, knowing you won’t be wasting your time.

The essence of the previous paragraph is formalized and generalized as the intermediate value
theorem:

!This can be applied to the solution of any equation in this way: Take your complicated equation and rewrite it
so that all of the stuff in the equation is brought over to the left side, so that the right side is 0. Then use f to label
the complicated function on the left side of the equation.
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Figure 7.4: An illustration of the intermediate value theorem.

THEOREM 3
The intermediate value theorem

Suppose that the function f is continuous for all values of = such that a < z < b, and suppose
that f(a) # f(b). Choose any y-value, call it d, such that d is strictly between f(a) and f(b).
(That is, either f(a) < d < f(b) or f(b) < d < f(a).) Then there is at least one z-value, call it
¢, where a < ¢ < b, such that f(c) =d.

An informal way to state the intermediate value theorem is that if f is continuous, then as you
draw the curve between (a, f(a)) and (b, f(b)), your pen will cross every y-value between f(a) and
f(b). This seems obvious when stated like this, doesn’t it? (See Figure [7.4]) If it’s so obvious why
do we bother stating it? There are a couple of reasons. First, it’s important to record the most
important reasoning principles (theorems) for easy reference, and to draw your attention to them.
More importantly, mathematicians have been burned enough times over the centuries by stating
that something is obvious, only to learn later (thanks to a deep and persistent thinker) that what
they thought was obvious is in fact false! So it has been learned from bitter experience that the
most important tools had better be carefully stated and proved, even when they seem obvious.

And the intermediate value theorem is a good case in point. It is true if the domain of the
function f is an interval of real numbers, but if the domain is the natural numbers, then the
theorem is false. The moral is that intuition is vital but it will only take you so far; it must work
hand-in-hand with logic. A proof of the intermediate value theorem is found in the theory section
towards the end of the chapter.

As an application of the intermediate value theorem, consider the equation
rsinz = cos(z?)

Does the equation have any solutions? It’s easiest to apply the intermediate value theorem if we
rewrite the equation as

zsinz — cos(z?) =0

and then define the function f as

f(z) = zsinz — cos(x?)
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The question about whether the original equation has any solutions can now be translated to,
“Does the function f have any zeros?” Let’s use a calculatorﬂ to calculate a few sample values of

f:

f0) = -1

f(1) = 0.301169
f(2) = 2472238
f(3) = 1.334491
f(4) = —2.069551
f(5) = —5.785824

Notice the sign changes in the values of f just calculated. Applying the intermediate value theorenﬁ
to the interval [0, 1], we can conclude that there is a number ¢ such that 0 < ¢ < 1, for which
f(e) = 0. Thus, the original equation definitely has at least one solution between 0 and 1. Applying
the intermediate value theorem again to the interval [3, 4], we can similarly conclude that the original
equation also has at least one solution between 3 and 4.

Of course, there may be many other solutions, and with further work we might locate roughly
where they are. (For starters, can you see that f is an even function? If you can convince yourself
of this, then you can immediately say that there are at least two more solutions to the original
equation, one between —1 and 0, and the other between —4 and —3.) But at least we can get our
computer program to approximate the solutions in the rough locations that we have identified so
far. Depending on the approximation algorithm, this knowledge might save a lot of time and work.

SUMMARY

In this section, a definition of the continuity of a function at a point is presented. Then the
concept of continuity is used to develop and state the intermediate value theorem.

2Remember to put your calculator in radian mode.
3Do you understand why f is continuous for all z values?



Chapter 8

Vertical and Horizontal Asymptotes

OVERVIEW

In this section, vertical and horizontal asymptotes are defined and techniques for calculating
them are developed. They are important because being able to calculate them helps us to
describe long-term behaviour of functions used to model processes in time, and they also help us
to understand the graphs of various types of functions.

You may recall from high school that certain functions have vertical asymptotes, and others
have horizontal asymptotes. Limits give us both the language and the means for determining
asymptotes. Even defining an asymptote is difficult without using the language of limits, and
unfortunately some high school textbooks don’t do it very well.

One of the simplest examples of a graph that has both vertical and horizontal asymptotes is

the graph of the function f(z) = —; see Figure
T

-4 -3 -2 -1

1

Figure 8.1: The graph of f(x) = — has a vertical asymptote at = 0 and a horizontal asymptote
x

at y = 0.
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First let’s discuss the horizontal asymptote for the graph of f(z) =

CHAPTER 8. VERTICAL AND HORIZONTAL ASYMPTOTES

Notice that as the

8|

z-values move farther and farther from the origin to the right of the graph, the y-values get closer
and closer to 0. You might try a few values using your calculator:

L1y
171
0.2
10 | 0.1
100 | 0.01
1000 | 0.001
1 000 000 | 0.000 001
1
We can use limit vocabulary to summarize the behaviour of the function f(x) = — as the
x

x-values move farther and farther from the origin to the right as follows:

lim 1 =0

T—00 I
Don’t let the presence of the notation z — oo mislead you into thinking that oo is a place; it is
not. Nor is oo a number; there is no location on the z-axis (nor on the y-axis) that one can label
and say, “Infinity is right here.” Rather, oo is a concept and so one cannot operate with infinity
as if it were a number. The notation x — oo means, “keep moving to the right along the z-axis,
indefinitely, getting farther and farther away from the origin, without boundary.” Some textbooks
use the phrase, “let x become arbitrarily large” as equivalent to z — oo, and that is a good phrase
to use if you like it and understand it.

1
The behaviour of the function f(x) = — as the z-values move farther and farther from the
x

origin to the left can be summarized as follows:

1
Using the function f(x) = — as a prototype, we can define what it means for a function to have

a horizontal asymptote as follows:

DEFINITION 4
Horizontal asymptote

The graph of the function y = f(z) has a horizontal asymptote y = L provided that either or
both of the following conditions is satisfied:

lim f(z) =1L or

T—00

lim f(z)=1L

T——00

1
Now let’s go back to the graph of the function f(x) = — and examine the behaviour of the
x

graph as = approaches 0 from both the left and right. Using your calculator, notice the trend in
the function values as  — 0 from the right:
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z Y
1 1
0.1 10
0.01 100
0.001 1000
0.000 001 | 1 000 000

As x gets closer and closer to 0 from the right, the function values get larger and larger, without
any boundary. Using limit language, this behaviour can be summarized as:

Another way to say this is that this limit does not exist. The limit does not exist because there
is no number that the function values get closer and closer to; rather, as x — 0T, the function
values surpass every number that we might suggest. This means that the use of the equals sign in
the previous equation is problematic, because it might mislead some readers into thinking that the
limit does exist, and the value of the limit is the number co. To repeat, oo is not a number, and the
limit in the previous equation does not exist. The “= oo” part of the equation is a brief summary of
the reason why the limit does not exist — because the function values increase indefinitely, without
bound, to arbitrarily large values.

The potential for confusion means that it would be better if we did not use the equals sign in
the previous equation; however, nearly every calculus text uses this notation, so we shall also use
it. Just be aware of what the notation means and don’t fall into the misconception.

1
Returning to the graph of f(z) = — in Figure the behaviour of the graph as x — 0 from
x

the left can be summarized as follows:

The “—00” in the previous equation is a brief way to explain why the limit does not exist: The
limit does not exist because as x approaches 0 from the left, the function values plunge lower and
lower, decreasing indefinitely, without bound, to negative values of y that are arbitrarily distant
from the origin.

DEFINITION 5
Vertical asymptote

The graph of the function y = f(z) has a vertical asymptote = a provided that at least one of
the following conditions is satisfied:

lim f(z) =00 or lim f(z)=-00 or lim f(z)=o00 or lim f(z)= -0
z—at z—at T—a~ T—a~

1
Now examine the graph of the function f(z) = — in Figure Notice that it also has a
x

vertical asymptote at = 0, and also has a horizontal asymptote at y = 0, just like the function

1
f(z) = —. However, the behaviour of the graph near the vertical asymptote reflects that fact that
X

1 1
f(z) = — is an even function, whereas f(z) = — is an odd function.
x x

Thinking about these two functions, and looking carefully at others, leads to:
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4 -3 -2 -1 |

1

Figure 8.2: The graph of f(z) = — has a vertical asymptote at 2 = 0 and a horizontal asymptote
x

at y =0.

THEOREM 4

Asymptotes and limits

1
(a) Horizontal asymptotes. If n is a positive integer, then the graph of the function y = —
a

has a horizontal asymptote y = 0. Furthermore,

Iim — =0 and Iim — =0
z—o0 " r——o00 M

1
(b) Vertical asymptotes. If n is a positive integer, then the graph of the function y = — has
x

a vertical asymptote x = 0. Furthermore, if n is an even positive integer, then

lim — = o0 and lim — =
z—0t ™ z—0— ™

lim — = but lim — = -0

To effectively use this theorem to determine vertical and horizontal asymptotes, we also need
to make use of the following theorem:
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THEOREM 5
A Practical Approach to Calculating Limits (continued)

6. (Limit Laws) Suppose that the function f is an algebraic combination of simpler functions.
Also suppose that the limit of each of the simpler functions exists. Then to evaluate the limit
of f, just evaluate the limit of each of the simpler functions, and combine the individual limits
using the same algebraic combination that forms f.

To be more specific, here are some fundamental instances of this idea. We also assume that & is
a constant, and that lim,_,, f(z) and lim,_,, g(x) both exist.

a) lim[k- f(z)] =k [lim f(a:)}

r—a r—ra

b) lim [f(z) + g(x)] = lim f(z) + lim g(z)

T—ra

(

( (

() lim [f(z) - g(2)] = lim f(z) — lim g(z)
(

T—ra T—a r—a

) lim [f(2) - g(x)] = [lim f(z)] - |lim g(a)]

r—a

(
m)} _ limg f (ﬂ?;

rT—ra Tr—ra

, provided that lim g(z) # 0

T—a

T=@ limg ., g(aj

(e) lim [f E

g(z)

The following examples illustrate the use of the two previous theorems in determining vertical
and horizontal asymptotes.
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EXAMPLE 16

Determining vertical and horizontal asymptotes

2 1
Determine any (a) vertical and (b) horizontal asymptotes of the function y = vt 7
Tz —

SOLUTION

(a) Because we are dealing with a rational function, the possible vertical asymptotes occur where
the denominator is 0. Thus, there is a possible vertical asymptote at x = 3.

To verify that this is indeed a vertical asymptote, let’s take the limit of the function as x — 3

from each side. First let’s calculate the limit from the right:

. 2¢ +1
lim

z—3+t r—3

As z gets closer and closer to 3, the numerator gets closer and closer to 2(3) + 1 = 7, and the
denominator gets closer and closer to 0. This implies that the limit does not exist, because the
function values become arbitrarily large as x gets closer and closer to 3. Furthermore, because
x > 3, the denominator is positive as  — 37, and the numerator is also positive for z > 3.
Thus,
. 2x+1
lim =
z—3+ r—3

and so the limit does not exist. It follows that = = 3 is a vertical asymptote.
To determine the behaviour of the graph to the left of the asymptote, let’s calculate

. 2+ 1
lim
rx—3- T — 3

The same argument as above shows that this limit does not exist either. However, when z < 0,
the numerator is positive and the denominator is negative, so the function values are negative.
They become arbitrarily far from the origin as x — 37, so

. 2r+1
lim =
z—=3— T — 3

(b) For horizontal asymptotes, we need to calculate the limit of the function as z — oo, and
also the limit as x — —oo. The standard procedure for doing this is to divide the numerator
and denominator by the highest power of z present in the expression. The reason for doing this
is that we can then make use of Theorem [11.4]

2x+1
2 1 L
lim T = lim £ L
=00 I — 3 T—00 E_é

X X
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1
241 2+
lim = lim
z—o00 T — 3 T—00 1— §
x
. . 1
9 + 1 limg o0 2] + [hmmﬁoo x]
lim = (using limit laws)

=00 T — 3

X

. . 1
9 + 1 limy 00 2] + [hmgc_>oo x]
lim =
T—00 T — 3

1
limg o0 1] — 3 {limx_mo }
x

o 2z +1 240
lim = —
z—o0 T — 3 1—3(0)
lim 20 + 1 _ 9

z—o00 T — 3

Because this limit exists and equals 2, the graph of the function has a horizontal asymptote
y = 2. Note that in evaluating the limits, we made use of the fact that the limit of a constant
function is the constant value. I will let you repeat the calculation for x — —oo; you’ll find the
same asymptote, so the only horizontal asymptote is y = 2. It is worthwhile sketching a graph
of the function to verify your calculations.

CAREFUL!
Sometimes a vertical asymptote, sometimes a hole discontinuity

Notice that in the previous example we were careful to say that if the denominator of a rational
function is 0 for a certain value of x this does not guarantee that the function has a vertical
asymptote at this value of . Do you recall seeing any such examples? Why yes, earlier in
this chapter we encountered many examples. When we set up limits to calculate slopes, the
denominators were invariably 0, yet many of the limits existed. In such cases, the graphs of the
expressions have hole discontinuities, not vertical asymptotes.

This means we can’t automatically assume that a rational expression has a vertical asymptote
when its denominator is 0; we must check the appropriate limits before making such a conclusion.
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EXAMPLE 17

Determining vertical and horizontal asymptotes

2
¢ -1
Determine any (a) vertical and (b) horizontal asymptotes of the function y = e B—
2+ —

SOLUTION

(a) The possible vertical asymptotes occur where the denominator is 0. Thus, there is a possible
vertical asymptote at the solutions of 22 +  — 6 = 0. The quadratic expression is factorable:
(x —2)(x 4+ 3) = 0. Thus, there are possible vertical asymptotes at z = —3 and = = 2.

Check each potential vertical asymptote:

li 12_1 li 1‘2—1
im —— = —00 im ——— =
-3+t 224+2—6 r——3-124+2—6
2 2
-1 -1
lim 2337 = 00 lim fiz—oo
=2+ r° 4+ 1 —6 z—2- x>+ x—6

It’s clear that each of the four previous limits is either co or —oo, but which sign is correct, + or
—7 Note that near each asymptote, the numerator is positive. The denominator is a quadratic
expression opening up, so it is negative between the roots —3 and 2, and positive when = > 2
and when x < —3. This explains the signs.

Thus, there are vertical asymptotes at both x = —3 and = = 2.
(b) For horizontal asymptotes, we need to calculate the limit of the function as z — oo, and

also the limit as £ — —o0. As in the previous example, divide the numerator and denominator
by the highest power of 2 present in the expression, which is z2.

x? 1
9 T
-1 2 2
lim —o = lim 22 %
z—oo x4+ —6 T—00 I x 6
2ta e
1
)
= lim L
T—00 1 6
1+—— 5
x x

. . 1
lim, 00 1] — [hmmﬁOO 172}

1
limg oo 1] + [limx%OO } - [limx%oo 62]
T T
1—(0)

1+ (0) —6(0)
=1

Because this limit exists and equals 1, the graph of the function has a horizontal asymptote
y=1.

I will let you repeat the calculation for £ — —oo; you’ll find the same asymptote, so the only
horizontal asymptote is y = 1.
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22 +4x+3

24+x—6
have vertical and horizontal asymptotes? By factoring the numerator and denominator, you will
find that

Now modify the previous example slightly: Does the graph of the function y =

?+424+3 (z+3)(z+1)
2+r—6  (2+3)(z—2)
rz+1

= (provided that = # —3)

By analyzing the simplified expression for this function, see if you can show that there is just one
vertical asymptote, x = 2, and the horizontal asymptote is y = 1. What happens at x = —37?
There is a hole discontinuity there (because the original expression is not defined there), but no
vertical asymptote. It’s worthwhile sketching a graph of this modified function and comparing it
to a graph of the function in the previous example.

Now consider a polynomial function. You might recall from high school that such functions
have no asymptotes. Their “end behaviour” is determined by limits as x — +00. For example,

lim z° = oo and lim 2% = -
T—00 T——00

Compare these limits to the graph of the function y = 22 in Figure

Y

A

Figure 8.3: The graph of y = 3, like all polynomials, has no asymptotes.

Now let’s look at some additional examples of calculating vertical and horizontal asymptotes
for functions that are not rational functions.
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EXAMPLE 18

Determining asymptotes

sinx

Determine any horizontal asymptotes for the function (a) y = sinx and (b) y =
x

SOLUTION

(a) The trend in the function values as x — oo is that they oscillate endlessly without approaching
a single definite value. The same is true as * — —oo. Thus,

lim sinz DOES NOT EXIST and lim sinz DOES NOT EXIST

T—r00 r——00

and therefore the sine function has no horizontal asymptote.

(b) Although the numerator oscillates between —1 and 1, the denominator gets larger and larger
in absolute value as x — 4o0o0. Thus, the function values get closer and closer to 0 as x — 400,
and so

lim = =0 and lim ot =0

r—o0 I r——00 I

. sin x .
Thus, the function —— has a horizontal asymptote y = 0.
x
Yy f(z) =sinx y fz) = S T
x
1 ﬁ\l
x b N~ \org
-1 \ -1
Figure 8.4: The sine function has no horizon- Figure 8.5: Despite its oscillations, the func-

tal asymptotes. As x — oo, the function
values oscillate without approaching a sin-
gle definite value. (The scale on the z-axis
is compressed relative to the scale on the y-
axis.)

sin x
tion y = —— has the horizontal asymptote

y =0, becguse the amplitude of the oscilla-
tions approaches 0 as © — +oo. (The scale
on the z-axis is compressed relative to the
scale on the y-axis.)

CAREFUL!
The graph of a function may cross an asymptote

There is nothing in the definition of a horizontal asymptote that prevents the graph of a function
from crossing its asymptote. Beware of this misconception about horizontal asymptotes that
you can find all over the internet. The previous example illustrates the fact that the graph of a
function can indeed cross its horizontal asymptote, in this case an infinite number of times. Of
course, there are plenty of functions that have horizontal asymptotes for which their graphs do
not cross its asymptote, but it is possible.

Part (a) of the previous example illustrates another way that a function can fail to have a limit:
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the function values can oscillate endlessly without approaching a single definite number. Part (b)
illustrates the fact that the graph of a function can cross its asymptote.

EXAMPLE 19

Determining asymptotes

Determine any vertical and horizontal asymptotes for the function y = tan x.
SOLUTION

One way to analyze the tangent function is to write it in terms of sine and cosine functions:

Possible locations of vertical asymptotes are x-values for which cosx = 0; thinking in terms of

3 5
the unit circle, these x-values are x = :I:I, T = :I:g, T = :I:%r, and so on. These will indeed

be vertical asymptotes provided that the numerator sinx is not equal to zero at these x-values.
This is true, because when cosz = 0, you can see from either the unit circle or the graphs of sine

and cosine functions that sinx = £1. Thus, the graph of y = tanx has vertical asymptotes at

x:iz,x::l:?ﬂ,x::l:ir,and SO on.
2 2 2

To determine the behaviour of the graph near the vertical asymptotes, let’s calculate the following
T
limits. Note that as x — 5 from the left, the sine function is positive, and so is the cosine

function. Therefore,

lim tanxz = co
x—mw/27

T
However, when x — — from the right, the sine function is positive, but the cosine function is

negative. Therefore,
lim tanz = —o0
z—mw /2t
Similar reasoning will show the behaviour of the graph near the other vertical asymptotes. How-
ever, we can equally well reason that the tangent function is periodic, with period 7, so once we
determine the graph for one interval of the z-axis of length pi, we can simply repeat this piece
of graph endlessly.

What about horizontal asymptotes? The tangent function is periodic, with period 7. This means
that as * — oo, or £ — —oo, the function values do not approach a definite number, but rather
repeat endlessly. This means that

lim tanz DOES NOT EXIST and lim tanz DOES NOT EXIST

T—00 T——00

This means that the graph of y = tanz has no horizontal asymptotes, which you can see from
the graph in Figure
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‘ Y y .

S (O oy =2 y=u

! ! !  f(z) =tanz ’

3 3 3 i ’ y - 10g2 xr
N 37%: o E: E: 3! -z - // ’ > T

T2 2| 2| 2, ’

| [ v | |
Figure 8.6: The graph of y = tanx has an Figure 8.7: The functions y = 2% (in black)
infinite number of vertical asymptotes but no and y = logy x (in blue) are inverses of each
horizontal asymptotes. other, and therefore their graphs are reflec-

tions of each other in the line y = z. The
black graph has the horizontal asymptote
y = 0 and the blue graph has the vertical
asymptote z = 0.

EXAMPLE 20
Determining asymptotes

Determine any vertical and horizontal asymptotes for the functions (a) y = 2* and (b) y = log, x.

SOLUTION
(a) Recall from high school (and see Figure that exponential functions such as y = 2%

increase indefinitely as  — oo, but approach the z-axis asymptotically as + — —oo. Use your
calculator and a table of values to get a sense for this if it is not clear. This means that

lim 2% = oo and lim 2 =0

The graph of y = 2% has no vertical asymptotes.

(b) The function y = logy x is the inverse of y = 2%. This means that the graph of y = logy x
is the reflection of the graph of y = 2% in the line y = z. Algebraically, this is equivalent to the
idea that if you interchange x and y in the formula for one the two functions, you will get the
formula for the other. But this also means that if you interchange x and y in any asymptotes
of one function, you will get the formula for an asymptote of the other function. Therefore, the
graph of y = log, « has a vertical asymptote at z = 0 and no horizontal asymptote.

In limit language,

lim log, z = 00 and lim 2% = —c0
z—00 2—0-




93

Before you study the next example, make sure you understand the following tricky point, which
is a key step in the solution of the example.

Consider a specific example first. Suppose you begin with 5, then square it to get 25, and then
finally take the square root. You end up back where you started, at 5. However, suppose you begin
with —5, then square it to get 25, and then finally take the square root. You end up with 5, which
is the negative of what you started with.

To summarize:

\/ﬁ_{ T ifoO}

—x ifz<0

Another way to express this point, which is relevant for the following example, is that if x > 0,
you can replace x by the equivalent expression v z2. However, if z < 0, you can replace x by the

equivalent expression —vz2.

It’s worth going through a few more examples on your own to make sure that you understood
this point. Once you do understand this point, proceed with the following example.

EXAMPLE 21
Determining asymptotes

3x2+4

Determine any vertical and horizontal asymptotes for the function y = 5
z —

SOLUTION

Since the denominator is 0 when x = 2, yet the numerator is not 0 when x = 2. This means that
there is a vertical asymptote at x = 2. The behaviour of the function near the vertical asymptote
can be deduced from the following limits (the numerator is always positive, so the sign of the
limit depends only on the sign of the denominator):

V3244 . V312 +4

lim —— =0 and lim —— = —0

z—2+t T —2 z—=2- T —2
To determine if there are horizontal asymptotes, let’s begin by calculating the limit as x — oo. If
we were to use the technique of dividing numerator and denominator by the highest power of x,
we might think that we should divide numerator and denominator by 2. However, because the
term 322 in the numerator is under a square root sign, we’ll be able to knock it out by dividing
the numerator and denominator by z, not z2. Pay careful attention to how this happens:

V322 4+ 4
3 I
lim M = lim L
T—00 €T — T—00 T —2

X
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3x2+4
322 44 /2
lim TS lim —Y2 (notice how x is replaced by V2, since z > 0)
z—=o0 1 — 2 r00 T — 2
x
322 +4
244 2
lim 3% + = lim z
z—o00 T — 2 T—00 xr — 2
T
32 L 4
32 44 T2 T2
lim v+ = lim L z
z—oo  x — 2 T—00 f _ g
T oz
4
3221 4 P
lim = lim
z—o00 1 — 2 T—00 1_ g
T
. . 4
limg, 00 3 + limg o0 <2>
. 32 4+ 4 x
im =

. . 2
limy voo 1 — limg o0 <>
T

1
322 + 4 \/3 iMoo (:ﬂ)
X

m — 5 = 1
. 1 — 21lim, e <)
X
V32214 3+ 4(0)
lim =
z—oo x — 2 1 —2(0)

2
limﬂ = 3

Because this limit exists and equals v/3, therefore y = /3 is a horizontal asymptote to the graph
of the function.

Now let’s calculate the limit as * — —oo. The calculation is almost exactly the same as the
previous limit calculation; the only difference is that when we divide the square root expression
by z, in the immediately following step we have to replace x by —+/z, because x < 0 as © — —o0.

V3zZ+4

lim — = lim &z
z——00 I — 2 500 T —2

Y
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312+ 4
3z2 +4 /2
lim T = lim L (notice how x is replaced by —V 2, since x < 0)
r——00 I — 2 500 T —2
T
322 +4
244 - 2
lim 3% + = lim z
z——00 I — 2 T——00 T — 2
x
322 N 4
244 V2 T2
lim 3% + = lim L L
r——00 I — 2 T——00 z B g
T x
3 4
322 1 4 Otz
lim = lim
T——00 I — 2 a—00 2
T
) . 4
— im0 34+ lim, o —
i 3z2 +4 z
lim =

2
limg v ool —limg o <)

x
1
T —\/3+4limw_,_oo <x2>
x

1—2lim, <>
X
lim 312+ 4 _ —\/3+4(0)
z——00 x — 2 1—2(0)
lim M = -3

Because this limit exists and equals —v/3, therefore y = —v/3 is a horizontal asymptote to the
graph of the function. The graph therefore has two horizontal asymptotes.

The results of the limit calculations are illustrated by the graph of the function in Figure 8.8
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Y
f(a) V3x2 4+ 4 |
)= —"7H#H— !
T —2 |
V3|
| Y
< : - T A
12
- |
77777777777777 ;ﬁ - y=vVri+3r+4—=x
. TTTmmmmes [~
! 2
; -z
’ l '
Figure 8.8: This graph has one vertical Figure 8.9: This graph has no vertical
asymptote and two horizontal asymptotes. asymptote and one horizontal asymptote.
The graph approaches the asymptote only
as T — 0o.

EXAMPLE 22
Determining asymptotes

Determine any vertical and horizontal asymptotes for the graph of the function f(x) =

V2 + 3z +4— .
SOLUTION

It is often useful to guess a limit before setting out to calculate it exactly. One way to do this
is to substitute suitable numbers into a calculator. However, limits (as z — oo or as & — —0o0)
of functions such as this one, which is a difference, are notably difficult to guess[?] What should
we do? Calculating this limit, or even deciding whether the limit exists, is problematic. It’s not
clear at first glance how to proceed.

Let’s think back to the limits that we’'ve calculated so far. The difficult ones were in the form
of a quotient, but we were often able to evaluate them by cancelling a troublesome factor from
numerator and denominator. If we can’t think of anything better to do, we can always try to
convert the formula for f into a quotient, since we’'ve got quite a bit of experience evaluating
limits of this type.

OK, how do we convert the formula for f into a quotient? Consider the following:

V22 L3z 1+ 4 —
Vel 3z+d—z=Y" i f—i_ *

WEell, sure, this is correct, but it doesn’t seem very helpful, since the two expressions are virtually

“In fact, computers have well-known difficulties with differences of large numbers that are almost equal, so one
must be careful when using software in such cases. Often one must do some reasoning and modify the expression
somewhat before letting the computer do its thing. This is a strong argument for understanding what you are
doing, so that you can use software wisely, not push it beyond its limitations, and be able to detect its mistakes.
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identical. However, it might give us the idea of multiplying numerator and denominator by the
conjugate expression, and then simplifying. This turns out to be very helpful:

Vo2 £3r+4—
%x2+3x+4—x _ =+ 5T + z

1
\/mfl‘ \/a:2+333+4—x‘\/:v2+3m—|—4+x
1 Va?+3z+4+

(\/x2+33:+4—1‘) (\/$2~|—3;v—|—4+a:)
Vat4+3x+4—z =
VZ+3z+4+z

2 2

+3r+4—

Val+3z+4—a = — z *
V2+3z+4+z

4
Va2 +3z+4—2 = 5o +
V2+3z+4+z

Now you might like to get out your calculator and guess the limit of this function as * — oo and
as * — —o0; you should have an easier time with this expression than the original one, which
already justifies our manoeuvers.

After you've guessed the limit, it’s time to calculate it exactly by analyzing the latest formula
for f. Before we do this, let’s think about vertical asymptotes first. Are there any values of x
for which the function is not defined? Well, the expression contains a square root, and it could
be that for certain values of x the quantity under the square root sign is negative, which would
make the entire expression undefined. To determine whether there are any such values of x, I'll
use the following reasoning.

The expression under the square root sign is a quadratic expression; if it were graphed, the graph
would be a parabola opening up. Thus, if it has two zeros, then the expression is negative for
all x values between the zeros. So a good start is to determine if the quadratic expression has
zeros. It doesn’t seem factorable, so I'll use the quadratic formula:

0 = 22+4+32+4
—b+ Vb2 —4ac

X =

2a

3+ /32— 4(1)(4)

J—

2(1)
S —3++v9—-16

N 2

S -3+ /-7

2

The square root of a negative number is not a real number, so we conclude that there are no real
zeros. Thus, the expression 22 4+ 3x + 4 is always positive (remember, its graph is a parabola
opening up), and therefore the expression Va2 + 3x + 4 exists for all values of x. Thus, the
domain of f is all real values of x. Finally, note that the square-root term in the denominator
has greater magnitude than the x term, so the denominator is not negative, even for negative
values of x. Therefore, we conclude that the graph of f has no vertical asymptotes.

Does the graph of f have any horizontal asymptotes? Let’s determine the limits as x+ — oo and
as x — —oo to answer this question.
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If we try to use oversimplified reasoning to calculate this limit, we may fall prey to an error that
commonly occurs. It might be tempting to reason that as z — oo, Va2 + 3z +4 — oo and also
x — 00, so therefore va2 + 3z +4—2 — co—oo = 0. THIS IS NOT VALID REASONING,
because oo is not a number that can be subtracted from itself to produce another number. In
situations such as this one, when we are trying to calculate the limit of a difference, and each
term — oo, the limit of the entire expression may or may not exist, and if it does exist, we have
no way of knowing what the limit is from this kind of reasoning. Correct reasoning involves
converting the difference to a quotient and then continuing as we illustrated previously:

3r+4
lim V2?2 +3z4+4—2 = lim vt (see above)
T—>00 =00 /g2 + 3xr +4+x

<3x+4>
lim V22 +3z+4—2 = lim i
T—00 T—r00 1/$2_|_3$+4_|_1»

(divide numerator and denominator by x)

lim Va2 +3z+4—2 = lim L

T—00 T—00 ‘/.T2+3$+4+£
X X
4
34—
lim V22 +3z+4—2 = lim L
T—00 T—00 1/1»24_31»_{_4—’_1
‘/.TQ
4
34—
lim V22 +3z+4—2 = lim
T—00 T—00 :E2 3x 4
4+ —=+—=+1

lim V22 +3z+4—2 = lim 24
JI+ S+ 5 +1
r x

5 3+0
a—00 VI+0+0+1

lim V22 +3z+4—2 = 3

T—r00

1

. 3

lim V22 +3z+4—z = =
T—00 2

3
Because the limit exists and is equal to 3/2, the graph of f has a horizontal asymptote at y = 7

Now let’s calculate the limit as x — —oo. In this case, we can use simple reasoning. Rewrite the
formula for f as follows:

Va4+3z+4—x=+V22+3x+4+ (—x)

Each term on the right side of the previous equation is positive as x — —oo, and each term
becomes arbitrarily large as x — —oo. Thus, the limit of the SUM of the two terms also
becomes arbitrarily large as  — —oo. That is,
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lim V22+4+3z4+4—2 =00

T——00

Alternatively, one can also tackle this limit using a method similar to the one we used to calculate
the limit as * — co. Here’s how this would work, if you wished to go to the additional work:

3 44
lim V22 +3r+4—2 = lim v
——00 z=—00 /g2 +3r+4+x

3xr+4

lim V22+3z+4—2 = lim &z
T——00 z—=—00 \/x2 + 3¢ +4+x

X

4
3+ —
Xz

T

lim v2243z+4—2 = lim

T——00 T——00 /2 +3x+14 xT
Tz
34—
lim vVa24+3x+4—2 = lim 24
T——00 z—=—00 \/x2 + 3z + 4 +1
2
4
34—
lim vV224+3x+4—2 = lim
T——00 T——00 .7?2 3 4
ﬁ—i_ 2+$2+1
4
3+ =
X

lim 2243z +4—2 = lim
——00 T—r—00 3 4
—1/1+*+f2+1
X X

As r — —o0, the numerator of the expression — 3, but the denominator — —1 + 1 = 0, so
the limit does not exist. A little analysis will convince you that the quantity under the square
root sign is slightly less than 1 as * — —oo, which means that the denominator is positive as
x — —o0o. This means that the expression — oo, and so the limit does not exist.

T

Thus the graph of f has a single horizontal asymptote, and no vertical asymptote. The result is
illustrated in Figure

8.1 Slant Asymptotes

The idea of an asymptote can be generalized. So far we have defined an asymptote as a vertical
or horizontal line such that the graph of a function approaches the line more and more closely as
you travel farther and farther away from the origin. But surely if you rotated the graph and its
asymptotes, so that the asymptotes were no longer vertical or horizontal, you would still wish to
call them asymptotes, wouldn’t you?

In other words, we should strive to define the concept of asymptote in a more “intrinsic” way.
That is, the definition should capture the geometric flavour of the concept.

One can reformulate the definition of a horizontal asymptote, in terms of vertical distance, as
follows:
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DEFINITION 6
Horizontal asymptote

The line y = b is a horizontal asymptote for the graph of the function y = f(z) provided that
either one or both of the following conditions is satisfied:

lim f(z)—b=0 or lim f(z)—b=0

T—r00 T—r—00

The same conceptual structure can be used to define a slant asymptote:

DEFINITION 7
Slant Asymptote

The line y = mx + b is a slant asymptote for the graph of the function y = f(z) provided that
either one or both of the following conditions is satisfied:

lim [f(z) — (mx+b)] =0 or lim [f(z) — (mz+b)] =0

T—r00 T—r—00

The definition of slant asymptote may be clear geometrically (the vertical distance between the
curve and the asymptote becomes smaller and smaller as  — oo or as * — —o0), but it gives us no
instructions on how to determine a slant asymptote. In other words, once you figure out what you
think the slant asymptote might be, the definition gives you a way of testing it to see if it really is
a slant asymptote. But how do we determine a candidate for a slant asymptote?

Let’s consider two types of functions — rational functions, and other types. You may recall
from high school that a rational function has a slant asymptote if the degree of the numerator is
one more than the degree of the denominator. One way to determine the equation of the slant
asymptote in this case is long division.

2

¢ —x
T Because f is a rational function for which

the degree of the numerator is one greater than the degree of the denominator, we can conclude
that the graph of f has a slant asymptote. Now use long division to obtain:

For example, consider the function f(z) =

z =2

r+1|22 -2

2 4z

—2z
—2x -2
2

From the long division, we can see that

2?2 -z 2

2
r+1 rz+1
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If you aren’t a fan of long division, there is a kind of shortcut to long division: Just add and
subtract the right term from the numerator in a step-by-step fashion, and you’ll achieve the same
result as long division. Here’s how it works in this case:

2 x2+3;—;1:—ac

e
xr+1 r+1
-z 2 ta—2
z+1 r+1
22— _ 2+ —2z
z+1  z+1  z+1
e A :U(a:+1)_2 x
r+1 r+1 r+1
2 —x r+1-—1
= -2 ———
T+ 1 r+1
2 _
-z, (x+1)—1
r+1 rz+1
2 —x x+1 1
= -2 _
r+1 r+1 x+1
2
— 1
L Y
T+ 1 z+1
2
Tt —x 2
= -2
z+1 v +gv—l—l

Compare the alternative development to the long division, and you’ll find that they are essen-
tially the same process, but done slightly differently. Choose the method you like best and practice
it, as the process is required frequently, and therefore it is essential to have this tool in your tool

kit.

Once we have the divided the polynomials in the rational function, we can read the slant
asymptote from the result: the slant asymptote to the graph of f is y = x — 2. To verify this, apply
the definition of slant asymptote by calculating the following limit. We’ll first look at z — oo, then

follow up with x — —oc:

Jim [f(z) = (z=2)] = lim
lim [f(z) = (z-2)] = lim
Jim [f(z) = (z-2)] = lim
Jim [f(z) = (z=2)] = lim
Jim [f(z) = (z=2)] = 0

Thus, the line y = z — 2 is a slant asymptote to the graph of f(x) =
T

r+1

—x+2}

2

Tt —x
+1

> — (z — 2)} (from an earlier calculation)

to the right. The limit

as * — —oo follows the same pattern with the same result, so the line y = x — 2 is also a slant

2

asymptote to the graph of f(z) = : _;13:
x

to the left.

The results are illustrated in Figure [8.10]
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r —xT

Figure 8.10: The function f(z) =
y=x—2.

T has a vertical asymptote x = —1 and a slant asymptote
x

For functions that are not rational, one way to determine if they have a slant asymptote is to
use guesswork and play with a calculator. Of course, after you have guessed, you will then verify
that your guess is correct using the definition of slant asymptote.

Consider the function f(z) = va? + 3z + 4 — z;, which we examined in an earlier example. We
have already determined that the graph of f has a horizontal asymptote to the right with equation
3
y=3 Could the graph of f also have a slant asymptote to the left?

One way to try to guess this is to use a calculator to create a table of values. Alternatively, one
might reason as follows. For values of z that are far to the left of the origin, z? is much greater
in absolute value than (3x + 4). This means that one can approximate f by ignoring the terms
3z +4):

= Va?+3r+4—x

f(@)

fl@) ~ Va2 —uz

flz) =~ —z—x (V22 is replaced by —z because z < 0)
f(@) —2x

Let’s test this approximation using a calculator:
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| v | flx)=Val+3z+4—a | —2z |

—10 18.60 20
—100 198.51 | 200
—1000 1998.50 | 2000
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It appears that the approximation is fairly good, but it seems that the approximation would be
better if we subtracted 1.5 from the approximating function. This suggests that there might be a

3
slant asymptote to the left with equation y = —2x — 3 We can test this by using the definition of

slant asymptote, as follows.

_ 3 - 1 \/27 3
xEEﬂoo _f(:n)— (—230—2) = xEIPoo _ 22 +3rx+4—x— <—2x—2>]

. 3 | 3

lim |f(x)— (—2&0—) = lim \/$2+3$+4—x+2x+}
z—=—o0 | 2 T——00 | 2

: 3 : 3

lim |f(x)— (-2 — = = lim 2 +3z+4+(z+ -
z——o0 | 2 z——oo | 2

The limit in the previous equation can’t be determined by simple reasoning yet, because as x — —o0,
the first term — oo and the second term — —oo. So, we must use the typical trick of multiplying
numerator and denominator by the conjugate, then simplifying, then using reasoning, as follows.

[\/x2+3x+4— <x+

)|

3 [ 3 2
lim {f(x)— (—Qx—ﬂ = lim $2+3£U+4—|—<.1‘—|—>:| :
T——00 2 T——00 2 3
- |:\/ZL‘2—|-3ZL‘—|—4—<£L‘—|—2>:|
- 2
3 m2+3x+4—<$—|—2>
lim [f(x) - <—2£L‘ - >} = lim
T——00 2 T——00 3
Va2 +3x +4— <x+2>
[ 2 2 9
- 3\ T x +3x+4—<az +3:1:+4>
lim |f(z)— (—2$ - > = lim
T——00 2 T——00 3
- - \/$2+3m+4—<x+2>
[ 2 2 9
r 3\ ] r+3r+4—2 —3x—1
lim |f(z)— <2:U - > = lim
T——00 2 T—r—00 3
- . \/x2+3x+4—(1:+2>
i . 42
lim |f(x)— <—2:n - > = lim 4
T——00 2 T——00 3
- . \/x2—|—3x+4+<—x—2>
tim | f@)— (—2e-2)| = o
.'L’—1>IPOO L t t 2 ] o

Note that in the second-last line of the previous calculation, the numerator is a specific number,

and both terms in the denominator approach +o0o as x — —oo. This explains why the limit is 0.

Therefore, according to the definition of slant asymptote, the line y = —2x— 3 is a slant asymptote.
See Figure [8.11



104 CHAPTER 8. VERTICAL AND HORIZONTAL ASYMPTOTES

y=va?+3z+4—z

3
Figure 8.11: The graph of the function f(x) = v + 3x + 4 — z has a horizontal asymptote y = 2

and a slant asymptote y = —2x — 3

DIGGING DEEPER
Is it possible to define two curves being asymptotic to each other?

Study the definition of slant asymptote. Carefully observe the structure of the definition. Can
you extend the definition to define a curve being asymptotic to another curve as £ — oo or as
x — —oo? If so, the next step will be to try to guess some curves that are asymptotic to each
other and then use your definition to test your guesses.

If you’re successful, then well done! Next, can you do the same for two curves that are asymptotic
as x approaches a specific number? (The asymptote would be vertical in such cases.)

SUMMARY

In this section we have defined vertical, horizontal, and slant asymptotes, and we have illustrated
how to calculate them with a number of examples.
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EXERCISES

(Answers at end.)

For each function, determine formulas for any vertical, horizontal, or slant asymptotes by
calculating appropriate limits. Use the results of limit calculations to help you sketch each graph
by hand, then check your work by sketching each graph using software.

L] 21
YT 3 Y= 3245
2 —3x+2 22 — 3z +2
3. y=__°>tT= 4, y=_——°rT°
22 + 37 + 2 222 + 5x + 2
5 _4x2+4x—8 6 _3332—1—333—6
ST o o 12 T P a4
7. y=cotx 8. y=secz
Yy =cscx 10. y=tan’z
2?2 —1 z?2—4
11. = 12. =
Y= % -3 72
13. y=3" 14. y=logyx
222 +3 3zt +5
15. = — 16. =
R Y= T2 ra
3 — 22 3 —x
17. = 18. =
YTt 10 G
19. y=vV922+2z—3x 20. y=vVa2?2+2zr+z
21. Consider the family of functions f(x) vk
. Consider the family of functions f(z) = ———.
Y 2?2 +1

Explore this family of functions for various values of the parameter k. Sketch graphs of such
functions for representative values of k. How does the behaviour of the graph change as the value
of k£ changes? Focus on the asymptotes of the graphs and the general overall behaviour. Do your
work by hand and then check your work using your favourite graphing software.

22. Repeat Exercise 21 for the family of functions f(z) = 2587]9
22 —

P+

23. Repeat Exercise 21 for the family of functions f(z) = PR
x‘ —_—

: : : 2+

24. Repeat Exercise 21 for the family of functions f(z) = P
22—

Answers: 1. £ =3/2,y=0; 2. 2=-5/3,y=2/3; 3. z=-2,z=-1,y=1; 4. x=-2,2=-1/2,y=1/2;
50 2=3,y=2; 6.2 =-2,y=3; 7. x==m x==27m etc.; 8 x==xn/2, x==+31/2, etc; 9. z ==+,
x = =£27m, etc.; 10. z = £7/2, z = £37/2, etc.; 11. 2 = 3/2, y = 2/2; 12. none (or should we say y = x — 27);
13. y=0; 14. 2=0; 15. x =1, y::t\/i; 16. y = +3; 17. y=x —1; 18. no asymptotes; 19. y = 1/6,
y=—6x—1/6; 20.y=—-1,y=2z+1
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8.2 What is Infinity?

OVERVIEW

brief summary

Although the symbol oo, and the way it’s used in some textbooks, may lead some to believe
that infinity is a number, at the level of understanding of this textbook, infinity is decidedly not a
number. So what is infinity, then?

Let’s start by thinking about the natural numbers. A basic property of the natural numbers
is that you can always add the number 1 to a natural number, and the result is another natural
number. For example, 7 is a natural number, and it is possible to add 1 to 7, with the result being
8, another natural number. Now this is true no matter how large the natural number you choose,
because this is a property of all natural numbers. What, then is the largest natural number?

You will be able to understand that based on this property of natural numbers, there is no
largest natural number. Suppose someone proposes to you that some natural number, no matter
how large, is the largest natural number. You could counter this proposal by simply adding 1 to
the proposed largest natural number to produce a natural number that is even larger. But that
new natural number is not the largest either, because you can also add 1 to it to obtain an even
larger one.

So there is no largest natural number. One could say that there is an unlimited number of
natural numbers. Another way to say this is that there is an infinite number of natural numbers.
This usage of the word infinite summarizes the fact that there is an unlimited number of natural
numbers.

There are many cars on Earth, but if you had to do so, you could count all of them. You
could take a super-snapshot of Earth at a particular time, and then you could carefully examine
this photograph and count all of the cars on Earth. No doubt the number is very large, but it
is a natural number. The number of cars on Earth is finite, because in principle you could count
the number and the result is a natural number. Similarly, you could (in principle) count all of the
atoms on Earth, at a particular time, and this too is a natural number, so we say the number of
atoms on Earth is finite[]

Similarly, there are collections of numbers that are finite. For example, consider the collection
of odd numbers that are between 1 and 100 inclusive. There are 50 such numbers, right? We
could say that the set of odd natural numbers less than or equal to 100 is finite. You could easily
construct any number of finite sets, such as the set of prime natural numbers that are less than
1000, the set of even numbers between 5000 and 9000 inclusive, and so on. So we have finite sets,
and then we have infinite sets, such as the set of all natural numbers.

In order to be able to have some way of talking about the number of elements of a set in a
unified way, whether the set is finite or infinite, mathematicians have coined the term cardinality.
It doesn’t make sense to speak about the number of elements in the set of all natural numbers,
because there is no such number. It does make sense to speak about the number of elements in the
set of odd numbers between 1 and 100 inclusive; this number is 50. We can say that the cardinality
of the set described in the previous sentence is 50, and the cardinality of the set of all natural
numbers is infinite. Thus, the concept of cardinality gives us a way of speaking about the “size” of
a set, whether the number is finite or infinite.

Tt appears that some of the most serious problems we have on Earth is that we humans collectively treat some
of our limited resources as if they were infinite instead of finite.
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Introducing the concept of cardinality may seem unnecessary, but let’s discuss something that
is potentially shocking. It certainly shocked numerous mathematicians when they learned about it
from Georg Cantor about a century ago:

There are different infinities, of different “sizes.” If you prefer, there are different “levels”
of infinity.

Is this not mind-boggling?? Are there really infinite sets that have different cardinalities?

To understand this amazing fact about infinities (yes, we should use the plural now), we’ll first
have to think about how to compare the cardinalities of two sets that are infinite. For example,
imagine the set of all natural numbers (we’ll call it A), and then imagine the set that includes all
natural numbers and that also includes the number 0 as well; we’ll call this set B. Now it seems
reasonable to say that set B is larger than set A; after all, set B includes everything in set A, and
set B also includes one number that is not in A. In the language of set theory, we would say that
set A is a proper subset of set B. However, this is not the way we currently understand infinite
sets, as you will see in the next few paragraphs.

Cantor came up with a criterion for comparing infinite sets that led him to his revolutionary
understanding of infinities. He said that two sets have the same cardinality if you could set up a
one-to-one correspondence between the two sets. That is, you have to be able to pair the elements
of the two sets, so that each pairing matches an element of one set with an element of the other
set, no element of either set is included in more than one pairing, and each element of each set is
included in some pairing.

Think about a sports stadium with 50, 000 seats. Now imagine that the stadium is full of people,
so that each seat is occupied by one person, no seats are empty, and each person in the stadium is
in a seat. You don’t need to count the people to determine how many of them are in the stadium;
you can immediately conclude that there are 50,000 people in the stadium, because they are in
one-to-one correspondence with the seats, and you know how many seats there are.

Now let’s apply this concept of comparing cardinalities to infinite sets. In particular, consider
the sets A and B described a few paragraphs ago. There exists a one-to-one correspondence
between the sets A and B, and so they have the same cardinality! Even though we have some sort
of sense that we should be considering B to be bigger than A, according to Cantor’s definition of
equal cardinalities, these two sets have the same cardinality! Can you come up with a one-to-one
correspondence that confirms this?

A good way to intuitively understand this is through the story of Hilbert’s Hotel. David Hilbert
was one of the greatest mathematicians of about a century ago, and he constructed a series of
“thought experiments” involving a hypothetical hotel that has an infinite number of hotel rooms. I
imagine the hotel rooms all in a (very long!) row, rather like a motel, to model the natural numbers
as we would normally plot them along a number line.

Suppose that all of the infinite number of rooms in Hilbert’s Hotel are occupied at the moment,
so that there are no vacant rooms. If a new prospective guests walks into the hotel’s lobby desper-
ately asking for a room for the night, is he or she out of luck? Well, not necessarily, according to
the clever front desk clerk. The clerk merely asks each guest in the hotel to vacate their room and
shift one room over. That is, the person in Room 1 moves to Room 2, the person in Room 2 moves
to Room 3, and so on. Each existing guest is perfectly well-accommodated, but now Room 1 has
been vacated, and so it is available for the new guest. Problem solved!

Once you have let this remarkable solution sink in, you might then understand why there is a
temptation among some people to express this shifty business as

c0o+1=00
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Resist the temptation to do this! This kind of equation encourages us to treat oo as if it were a
number, but we have already argued (earlier in this chapter) that this is not so! So avoid such
nonsensical equations. Nevertheless, you can also understand the temptation to write such an
equation, because it does (in a way) capture an important property of Hilbert’s Hotel; even if all of
the infinite number of rooms is occupied, space can always be made available for one more guest.
Mind-boggling! Infinity sure is unusual.

Does this story help you to feel a bit better about the fact that the sets A and B, described
earlier, can be placed in one-to-one correspondence, and therefore have the same cardinality? Would
it help more if you could find an explicit formula for such a one-to-one correspondence? Here’s one,
perhaps the simplest one, that does the trick: f(n) = n + 1. The same formula describes the way
existing guests must shift rooms: The guest in Room n must shift to Room n + 1.

You can iterate the front desk clerk’s shifty technique to accommodate two new guests, three
new guests, and indeed, any finite number of new guests. (What is the shifting formula in such
cases if there are m new guests?) But this kind of shifting clearly won’t work if an infinite number
of new guests arrive, right? For example, let’s suppose that there is a neighbouring hotel that is
much like Hilbert’s Hotel, in that there are an infinite number of rooms, all currently occupied by
guests. There is a power outage at the other hotel; is there any way that this infinite number of
guests can be squeezed into Hilbert’s Hotel, with each guest having his or her own room? If there
were only 5 new guests, we could just shift each existing guest five rooms over. But with an infinite
number of new guests, shifting in this way doesn’t work. What does it mean to shift each existing
guest an infinite number of rooms over? This is meaningless! Where does the guest currently in
Room 37 get moved? Because oo is not a number, saying that the guest in Room 37 should be
moved to Room 37 4 co has no meaning!

But the front desk clerk is very clever, and decides that if for each n, the guest in Room n shifts
to Room 2n, then each existing guest will still be accommodated (in all the even-numbered rooms),
and yet an infinite number of rooms (the odd-numbered ones) will have been vacated, allowing all
of the guests displaced from the other hotel to be accommodated also! Isn’t this amazing?

The previous paragraph shows that the cardinality of the even natural numbers is the same as
the cardinality of the natural numbers. In some intuitive way, we would wish to say that there are
half as many even numbers as natural numbers, but no, our intuition is way off when it comes to
infinite sets. Similarly, the cardinality of the odd numbers is also the same as the cardinality of the
natural numbers. What is a simple formula for a one-to-one correspondence demonstrating this
latest fact?

Once again, one might be tempted to write
00 + 00 = 00 or 200 = 00

to express this strange fact, but one should really avoid doing so, as oo is not a number, and
therefore can’t be combined in an equation like this according to the usual rules for manipulating
numbers. But you can certainly see why such nonsensical equations are written in some places;
they are attempts to express strange and wonderful properties of infinity in a form that is not
appropriate for communicating such facts.

What if there were two or three other copies of the Hilbert Hotel, whose occupants all had to
be squeezed into the Hilbert Hotel? Would you be able to do so if you were the desk clerk? Which
formula proves that such redistributions of guests are possible? What if there were m total copies
of the Hilbert Hotel (including the HH); can you do the redistribution? What is a formula that
proves that such a redistribution is possible?

If you were able to complete the tasks in the previous paragraph, you will now be convinced
that the cardinality of m copies of the natural numbers, taken as one giant set, is the same as the
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cardinality of one copy of the natural numbers by itself. Remarkable!

In the previous paragraph, m is a finite number. What if you had an infinite number of hotels
like the Hilbert Hotel? Would you be able to fit all of the guests in all of these infinite number
of hotels into just one Hilbert Hotel by redistributing all of the guests? Surely this is impossible,
right? At least it’s not possible using the method of the previous paragraphs for a finite number
of copies of the natural numbers. It’s worth pausing right now, turning away from this page, and
mulling this over for some time. Return to your reading only after you have mulled things over for
a while, and after having writing your thoughts in your research notebook.

After mulling it over, what do you think? In fact, it is indeed possible! The cardinality of
an infinite number of copies of the natural numbers is the same as the cardinality of the natural
numbers! Wow! It is a little more challenging to come up with an explicit formula for a one-to-one
correspondence in this case. It may help you to sketch a diagram, where each row of the diagram
corresponds to a copy of the natural numbers. Then ask yourself if there is a systematic way to step
your way through the entire (infinite) array of numbers, such that you are certain to eventually
step on each number in each row. Doing this may help you to understand that this is possible,
and provided your pathway is simple enough, you may also be able to write a formula for the
correspondence. This is a challenging task, but have fun with it!

We stated earlier on that there were different levels of infinity, but so far we have only encoun-
tered one, the cardinality of the natural numbers. Each of the infinite sets we have constructed so
far has the same cardinality. It turns out that the cardinality of the real numbers is greater than
the cardinality of the natural numbers. The proof that this is so is due to Cantor, again, and it is
based on a beautiful idea nowadays called Cantor’s diagonal argument, which I’ll now describe.

Consider the real numbers between 0 and 1. Cantor showed that the cardinality of this set
is not equal to the cardinality of the natural numbers by proving that it is not possible to place
the two sets into one-to-one correspondence. He did this by using a proof by contradiction, which
is to assume that it is possible and then demonstrate a contradiction, showing that the original
assumption is false. So, let’s retrace Cantor’s steps by assuming that it is possible to construct a
one-to-one correspondence between the natural numbers and the set of real numbers between 0 and
1. In effect, this assumption is that you can place the entire set of real numbers between 0 and 1
in a list in some way. For example, here is a partial list:

0.3715682. ..
0.4931657 . ..
0.1153267 ...
0.0474749. ..
0.9535360. ..
0.0088841 ...
0.5583322. ..

Clearly we can’t display the entire list, nor can we even show the complete decimal expansion of
each number in the list, but the assumption is that this can be done. Cantor then argued that this
assumption is incorrect by constructing a number that is not in the list. Do this by constructing a
number that differs from the first number in the first decimal place, differs from the second number
in the second decimal place, differs from the third number in the third decimal place, and so on.
You can do this according to some rule to make it easier; for example, if the given digit is a 3, then
make it a 5, and if the digit is not a 3, then make it a 3. Look at the list of numbers above, and
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apply this rule to the red digits to construct a new number:
0.5333533.. ..

The particular rule used is not essential; many other rules would work just as well. Consider the
new number just constructed and note that it is not in the original list of numbers. You can tell it
is not in the original list, because it is not the first number in the list (it differs in the first decimal
digit), it is not the second number in the list (it differs in the second decimal digit), it is not the
47-th number in the list (it differs in the 47-th digit), and so on. Therefore, it is not in the list,
and the assumption that we had a complete list of all real numbers between 0 and 1 is false.

Can you obtain a complete list of all real numbers between 0 and 1 by just including this new
number at the top of the list? No. You can see that this attempt will not work by applying Cantor’s
diagonal argument again to the new list to construct yet another real number between 0 and 1 that
is not in the new list either. No matter how many newly constructed numbers you add to the top
of the list, it will never be a complete list of all real numbers between 0 and 1.

The same argument can be applied to any proposed complete list of real numbers whatsoever.
Isn’t this an ingenious argument? And isn’t the result absolutely remarkable?

Thus, it is not possible to list all of the real numbers between 0 and 1. Another way to say this
is that it is not possible to place the real numbers between 0 and 1 in one-to-one correspondence
with the natural numbers, and therefore the cardinality of the real numbers between 0 and 1 is
different from the cardinality of the natural numbers.

It turns out that the cardinality of the set of all real numbers is the same (!!) as the cardinality
of the set of real numbers between 0 and 1. Can you argue that this must be true? Hint: If you
can construct a one-to-one function that maps the entire real line into the interval of real numbers
from 0 to 1, then this would be an explicit proof. A function that maps the other way would work
just as well. Search your memory banks for a graph from high school that will do the trick!

Isn’t it mind-boggling that the number of real numbers between 0 and 1 is the same (in the
sense of one-to-one correspondence) as the number of all real numbers? These two sets have the
same cardinality. Because the set of natural numbers is contained within the set of real numbers,
and these two sets cannot be placed in one-to-one correspondence, we say that the cardinality of
the real numbers is greater than the cardinality of the natural numbers. Thus, we have established
the existence of two levels of infinity. Here is some standard terminology: Sets that either contain a
finite number of elements or can be placed in one-to-one correspondence with the natural numbers
(such as the even numbers, the odd numbers, the integersE] and so on) are called countable sets.
Infinite sets that are countable are also called countably infinite. Infinite sets that are not countable
are called uncountable. Thus, we have (so far) two levels of infinite sets, sets that are countably
infinite (such as the natural numbers) and sets that are uncountable (such as the real numbers).

Are there any levels of infinity that are between the cardinality of the natural numbers and the
cardinality of the real numbers? Cantor conjectured in 1878 that the answer to this question is no,
in what is now called the continuum hypothesis. Attempts were made for many years to either prove
the continuum hypothesis or to discover a counterexample, which culminated in a publication by
Kurt Godel in 1940 in which he showed that it is impossible to disprove the continuum hypothesis
within standard set theory. Paul Cohen showed in 1963 that the continuum hypothesis cannot be
proved within standard set theory either! This remarkable set of results shows that the continuum
hypothesis is independent from standard set theory. To learn more about this very strange result,
look up Godel’s incompleteness theorem.

2Can you prove that the integers can be placed in one-to-one correspondence with the natural numbers by con-
structing a suitable formula?
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We stated earlier that there is a whole hierarchy of infinities, but so far we have only seen
examples of two levels of infinity, that of the natural numbers and that of the real numbers. How
can one construct higher levels of infinity? What about the cardinality of the set of points in the
plane that you used so much in high school to study functions? Surely the cardinality of the number
of points in the plane is greater than the cardinality of the real line? But no, the cardinalities are
the same! Proving this is more challenging, though, than Cantor’s diagonal argument. (Look up
the Schroder-Bernstein theorem if you are curious about this.) Similarly, the cardinality of the
points in three-dimensional space is also the same as the cardinality of the real number line. Thus,
simply moving to higher-dimensional spaces does not give us a greater level of infinity.

How does one construct sets with cardinalities at higher levels of infinity? We shall leave this
discussion for another time, but if you are curious you can consult a work on mathematical analysis
or set theory.

Before concluding this discussion, it is worth mentioning that the ancient Greeks already dis-
tinguished between what they called actual infinity and potential infinity, and this is a useful
distinctions. Actual infinity is reserved to describe an infinite set in its entirety, such as the set of
natural numbers taken as a whole, or the set of real numbers taken as a whole. Potential infinity is
reserved for the idea of a quantity that is increasing without bound, so that the quantity gets larger
and larger with each step of the process, with no limitations on how large it gets. Our discussion
of limits as = “approaches infinity” fits this sense of potential infinity. In fact, we discuss limits as

T — 00 and T — —00

where we typically envision x “moving” to the right indefinitely in the first case, and “moving” to
the left indefinitely in the second case. It’s worth emphasizing again that in both of these cases
“infinity” is not a place, but rather this is a process of imagining what happens when a quantity
(x in this case) either “moves” to the right indefinitely or “moves” to the left indefinitely.
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Chapter 9

Rates of Change in Applications

OVERVIEW

In applications of calculus, it is often the rate of change of a quantity that is of primary impor-
tance. In differential calculus, the focus is on determining the rate of change for a given quantity.
In integral calculus, it is the rate of change of a quantity that is somehow known (from exper-
iment, for example, or from some other analysis), and the focus is on determining the function
that describes the quantity.

Let’s review the conceptual foundation of the calculus story, as we’ve told it so far.

A primary reason for studying mathematics is that it enables us to quantitatively describe
the world and thereby better understand it. Functions are typically used as mathematical models
of worldly phenomena; we hope that by mathematically analyzing the functions, we may learn
about them, and then transfer what we’ve learned to better understand the phenomena that we
modelledE] This is the main perspective on calculus that we’ll focus on in this course: Calculus is a
tool for analyzing functions so that we can ultimately better understand the world. There are other
perspectives on calculus, some of which we shall touch upon from time to time, but the analysis of
functions will suit our purposes best.

A fundamental concept is the slope of a tangent line to the graph of a function. The slope
indicates the rate of change of the quantity modeled by the function. And the derivative is the
algebraic counterpart to the rate of change. In summary:

slope rate of change derivative
! © ! © !
geometric physical algebraic

So we have various perspectives (geometric, physical, and algebraic)ﬂ on this fundamental con-
cept, and different phrases (slope, rate of change, derivative) to describe each perspective, but
ultimately there is one concept here. Understand how these different perspectives are related, and
how they all mean essentially the same thing, and you will have understood something valuable:
one of the core fundamental ideas of calculus.

LOf course, this is a dynamic process. One tests models by confronting them with observational or experimental
data, and even the best models are typically found wanting in some way. Then one attempts to modify the models
to improve them, or to create better models. Then they are tested, and the whole process repeats.

2We could even add “numerical” as a perspective as well, since the first process we used to estimate the slope of
a curve was a numerical procedure.

113
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In this section we’ll discuss the connections among the different perspectives in the contexts of
a few examples.

Let’s begin by discussion motion as an example. It’s important to discuss motion for a number
of reasons. First, motion is familiar and we can readily visualize it, and phenomena that are
concrete and easy to visualize are good ones to begin with when striving to understand a new
concept. Second, almost every phenomenon in science has some motion associated with it, and so
understanding motion will help us understand many scientific descriptions of the world. Finally,
once we understand the descriptions of motion in terms of rates of change, we’ll be able to more
easily transfer the same kinds of conceptual understanding to other situations, as we shall see when
we discuss subsequent examples in this section.

In learning mathematics, we typically start with the easiest situations, and then gradually
increase the complexity and difficulty level. To understand motion, it is reasonable to begin with
the simplest kinds of motions, such as motion in a straight lineE|

Consider a car that moves along a straight test road. There are no other cars present, so the
car can move forward or backwards without danger of collisions. If we mark the road with a scale,
much like a number-line, then we can note the car’s position along the road at any time. We can
then plot the position for each time on a graph; because the car can’t be in two positions at the
same time, the result is the graph of a function. Thus, the position of the car can be thought of as
a function of time.

It’s customary to plot time along the horizontal axis of such a graph, and to plot the position
along the vertical axis. It’s also customary to identify a particular time as the “starting time,” and
label that as t = 0. In other words, it’s customary to imagine a stop—watcfﬁ being used to time the
car’s travel, with ¢ = 0 representing the instant that the stop-watch is started.

Let’s suppose that the car moves along this straight test road from position ¥y = +3 m to
position x = 47 m in 5 s, then stops, reverses, and continues to position x = +1 m in an additional
3 s. To make this initial example as simple as possible, let’s also suppose that the speed is constant
for each of the two legs of the journey we have just described.

We could represent the journey graphically as in Figure this figure is not yet a position-time
graph, but rather a simpler representation that is called a motion diagram in some textbooks.

We might imagine that the road is oriented so that north is towards the upper part of the page
(or screen, if you are reading this on a screen), and south is towards the bottom of the page or
screen. If you follow the dots on the diagram in the order of the time lables, the car moves north
at a constant speed for 5 s, stops, reverses, and then moves south at a constant speed for 3 s. A
real car would pause momentarily before changing direction, and would gradually slow down before
stopping, and would gradually speed up after starting to move south, but to simplify our discussion
we’ll pretend that the car changes direction instantly. This is somewhat typical of mathematical
modelling of real physical phenomena; for the sake of simplification, the model becomes unrealistic,
but one hopes that the model can be subsequently improved by making it more realistic, at the
cost of making it less simple.

Does the diagram in Figure help you to visualize the motion of the car, or otherwise to
understand it? For example, can you tell at a glance that the car moves at a constant speed as it
moves north? How can you tell? How about the second leg of the journey, when the car moves
south; can you tell that the car moves at a constant speed there? Which of the two speeds is

3Unless you consider that stillness, which is no motion at all, is even simpler. Although some would argue that
stillness is a special case of straight line motion (with zero speed), in which case just forget I mentioned this.

1A stop-watch is a special type of clock used to time races, and called as such because the clock can easily be
stopped and started again.
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Figure 9.1: An example of a simple journey along a straight path. The motion is back-and-forth
along a single straight road, but the diagram shows the first part of the journey on the left and the
second part of the journey on the right for clarity. Can you visualize the motion based on following
the dots in the graph?

greater, the speed for the first leg of the journey or the speed for the second leg of the journey?
How can you tell?

The dots in the diagram represent snapshots of the car at the times indicated. Because the
snapshots were taken at equal time intervals (they are separated by 1 s), and because the dots are
equally-spaced along the road, the car travels equal distances in equal times; this means that the
car is moving at constant speed. Because the dots are spaced farther apart on the second leg of
the journey, the car moves faster on the second leg of the journey.

You can calculate the speed of the car on the first leg of the journey as follows:

distance _ 7T—3
time interval 5 —0

speed = =0.8m/s

The car’s speed on the second leg of the journey is

distance 7—1

speed = =2m/s

time interval - 8—-5

These calculations confirm that the car’s speed is greater on the second leg of the journey.

It is popular to display the same information about the motion from the diagram in Figure[9.1
in a two-dimensional plot called a position-time graph; see Figure[9.2] Each of the indicated points
on the position-time graph represents the location of the car at the time of a snapshot. For example,
the first indicated point at the far left of the graph represents the fact that when the stop-watch
reads t = 0 s, the position of the car is y = 3 m. The sixth indicated point represents the fact that
when the stop-watch reads t = 5 s, the position of the car is y = 7 m.

Similar interpretations apply to the other indicated points in Figure 9.2 However, the car
certainly exists and has locations at the times between the snapshots, and so the actual position-
time graph of the moving car should be the graph of a continuous function. We are assuming
that the car moves at a constant speed during each leg of its journey, which means that the actual
position-time graph of the car’s motion is the graph of the continuous function shown in Figure [0.3]
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Figure 9.2: The motion represented in the previous figure is represented here in a position-time
graph. Each indicated point on the graph corresponds to an indicated “snapshot” point in the
previous figure.

- t(s)
v 1 2 3 4 5 6 7 8

Figure 9.3: The car exists at every moment, and so the actual position-time graph of the car’s
motion is continuous, as in this figure. What does the slope of each segment of the graph represent?

The actual motion takes place along the road, which is represented by the y-axis; the car moves
straight north, stops, and then moves straight south. The shape of the position-time graph does not
represent the path of the moving car. Each point on the position-time graph represents a position
of the car at a certain time.

Can you get a sense for the car’s motion from the position-time graph? This is a valuable skill,
which you can improve if you devote some time to it, because once you figure this out you will be
able to interpret all kinds of other graphs as well.

For example, note that the slope of the position-time graph has units m/s. The value of the
slope of the first segment of the graph is +0.8 m/s, and the slope of the second segment of the
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graph is —2 m/s. What does it mean in terms of the motion of the car that one of these slopes is
positive and one is negative? Remember that the slope of the graph represents the rate of change
of the quantity plotted on the vertical axis with respect to the quantity plotted on the horizontal
axis. Thus, the absolute values of the two slopes represent the speeds of the car on each leg of its
journey. What do the signs of the slopes mean? On the first leg of the journey, the positive slope
means that the positions are increasing as time passes, which means the car is moving along the
road in the direction in which the road-marker numbers increase. (The way we set up the road,
this means north; of course, in another situation, the road could be oriented differently, and the
scale could be oriented in two ways along the road.) On the second leg of the journey, the negative
slope means that the positions are decreasing as time passes, which means the car is moving along
the road in the direction in which the road-marker numbers decrease (i.e., south).

Once you have understood the previous paragraph, interpreting a position-time graph will
be straightforward. A positive slope indicates motion in the positive direction (according to the
markers on the road) and a negative slope indicates motion in the negative direction.

In physics, the velocity of a moving object is a concept that includes both the object’s speed
and its direction of motion. Thus, the slope of the position-time graph represents the velocity
of the car’s motion. The magnitude of the slope represents the speed and the sign of the slope
indicates the direction of motion. Figure [9.4] shows the velocity-time graph for the car’s motion.
The discontinuity in the velocity-time graph at ¢ = 5 s corresponds to the sharp corner in the
position-time graph at the same time. Both of these features indicate the unrealistic situation that
the car’s speed changes abruptly; in reality, changes in speed are not sudden.

The physical concept for the rate at which the car’s velocity changes is called the car’s accel-
eration. The acceleration corresponds to the slope of the velocity-time graph. As you can see, the
acceleration is zero for the first leg of the journey, and also for the second leg of the journey, because
the velocity does not change in either leg of the journey. However, because the velocity changes
abruptly at t = 5 s, the acceleration makes no sense there. As described by Newton’s second law
of motion, the acceleration of the car is proportional to the total of all forces acting on the car, so
where the acceleration is nonsensical, the force acting on the car makes no sense either; this is not
physically realistic. This is yet another way of describing the fact that the motion of the car has
been modelled unrealistically at ¢ = 5 s.

v (m/s)
4

3

-2

Figure 9.4: A velocity-time graph for the car’s motion. Compare this to the position-time graph in
the previous figure. The discontinuity in the velocity-time graph corresponds to the sharp corner
in the position-time graph, both of which are signs that this model of the car’s motion is unrealistic
at t =5 s.
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It is often helpful to plot position-time graphs and velocity-time graphs together in a vertically-
aligned pair, as in Figure[9.5l Compare the two graphs and note that the height of the velocity-time
graph at a particular time is the slope of the position-time graph at the same time. You might like
to indicate a few vertically-aligned points on the two graphs and verify that this fact.

-2

A\

Figure 9.5: Plotting a position-time graph and the corresponding velocity-time graph together,
vertically aligned, often aids understanding of the motion. These graphs are for the moving car.

A more realisitic, and familiar, situation is tossing a ball vertically upwards. If we ignore air
resistance (so the situation is not perfectly realistic), so that only gravity acts on the ball, then the
acceleration of the ball has a constant magnitude. You are no doubt familiar with this situation,
but it is always helpful to actually toss a ball upwards a few times now to remind yourself of the
situation. The ball moves upwards for a while, gradually slowing down, then momentarily stops,
then moves downwards and gradually speeds up. If we imagine a vertical measuring tape that
we use to record the position of the ball at various times, and if the numbers on the measuring
tape increase upwards, then ball initially moves in the positive direction, then stops momentarily,
then moves in the negative direction. In other words, the velocity of the ball is positive for a
while (although its magnitude decreases), then the velocity is zero momentarily, then the velocity
is negative.

It is a fact that the acceleration of the ball is about —10 m/s? with the setup we have chosen (i.e.,
that the position increases in the upwards direction), and is constant if we neglect air resistance.
This means that the slope of the velocity-time graph of the ball is a constant value of —10 m/s?.
Let us suppose that the initial upward speed of the ball is 25 m/s. (This value is unrealistically
high unless you are a very strong athleteE] but it will serve to illustrate the general character of

®Convert the initial speed to km/h if this is not clear.
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Figure 9.6: A velocity-time graph for a ball thrown vertically upwards with an initial speed of 25
m/s, with the assumption that there is no air resistance.

the graphs that describe such motion.) The velocity-time graph for this initial velocity is plotted
in Figure

CAREFUL!
The sign of the velocity indicates the direction of motion

A common error made by beginning students is to look at a velocity-time graph such as the one
in Figure and interpret the negative slope as meaning that the object moves in the negative
direction throughout the 5-s time interval plotted on the graph. THIS IS NOT CORRECT.
The slope of the velocity-time graph is the acceleration; the fact that the acceleration is negative
means the the velocity decreases. It is the sign of the velocity (that is, the height of the velocity-
time graph, not its slope) that indicates the direction of motion. Thus, the positive velocity in
the first 2.5 s corresponds to the fact that the ball moves upwards in this time interval, whereas
the negative velocity from ¢ = 2.5 s to ¢ = 5 s indicates that the ball moves downwards in this
time interval. Right at ¢ = 2.5 s the velocity is zero; this is the time when the ball momentarily
stops.

The absolute value of the velocity indicates the speed. You can read the speed from the velocity-
time graph by noting the velocity and then ignoring its sign. Examine the graph carefully; is it
clear that the ball slows down during the first 2.5 s of its motion and speeds up during the next
2.5 8?7

What does the position-time graph look like for the ball thrown vertically upwards? Well, we
know the ball goes up, stops, and then comes down again, so the position-time graph must do the
same, because we have chosen the position scale so that it increases in the upwards direction. But
can we be a little more precise? Without knowing specifically where the zero-position on the scale
is located, no, we cannot be more precise about what the graph looks like. But suppose that the
scale is set up so that the zero-position on the scale is located where the ball is released; then we
can indeed be more precise. In fact, determining the position-time graph from the velocity-time
graph is an example of a problem that belongs to integral calculus. The velocity function is the
derivative of the position function, so in going from the velocity function to the position function,
in effect we have to anti-differentiate.

We can explore the idea of anti-differentiation numerically in this context. Knowing that the
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position of the moving ball is y = 0 m at ¢ = 0 s, and also knowing that the velocity at that time
is 25 m/s, we can sketch a little part of the tangent line to the position-time graph at this initial
time; see Figure Starting at the initial time ¢ = 0 s, the velocity-time graph indicates that the
initial velocity is 25 m/s. This means that the slope of the position-time graph at this time is 25
m/s; this is indicated on the position-time graph by the small piece of tangent line placed at the
initial position of y = 0 m.

We can repeat the process for other times. For example, we can read from the velocity-time
graph that the velocity at £ = 1 s is 15, and so we can sketch a small piece of tangent line of slope
15 m/s on the position-time graph at t = 1 s. However, it’s not clear what the vertical placement
of this little piece of tangent line should be, and at this stage of our development we can’t be sure
about this. (This will be discussed extensively later in the book, at which point we will be quite
certain about questions such as this.) For example, if we extend the tangent line sketched at ¢ = 0's
out to ¢t = 1 s, it will intersect the vertical line at ¢ = 1 s at a position of 25 m. However, we can be
certain that this is an overestimate of the position at ¢ = 1 s, because this is the position that the
ball would attain after 1 s if it were moving at a constant speed of 25 m/s. This is not so; we know
that the ball gradually slows down in the first second. Thus, we know that the position of the ball
after 1 s will be somewhat less than 25 m, but at this point in our development we can’t be sure
exactly what the position will be. The position has been sketched correctly on the position-time
graph, but it’s worth thinking a little bit about how you might be able to pin this down exactly, in
preparation for developments later in the book.

y (m)
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Figure 9.7: To construct a position-time graph for the moving ball from its velocity-time graph,
we must anti-differentiate. The first step in an elementary version of this process is to plot a little
bit of the tangent line to the graph at ¢ = 0. Little bits of tangent lines at other times are also
included, but it’s not clear at our current level of development where these bits of tangent line
should be positioned vertically on the graph. Note that the slope of the upper graph is equal to
the height of the lower graph, as indicated by the dashed vertical lines.
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CHALLENGE PROBLEM
Approximating a position-time graph from a velocity-time graph

Let’s continue the discussion in the previous paragraph. How can you approximate the position-
time graph given the velocity-time graph? For example, you might assume that the speed is
constant during the first second and calculate the position at the end of 1 s. Then, using the
new speed at t = 1 s (read from the velocity-time graph), you can assume that the new speed is
constant for the next second, and calculate the position at ¢ = 2 s, and continue similarly until
you reach ¢t = 5 s. This is certainly not correct, but at least you will have some approximation.
How good is the approximation? It’s a bit hard to say, isn’t it?

But what if we separated the 5 s time interval into 0.5 s sub-intervals instead of 1 s sub-intervals?
Then assuming that the initial speed is constant for the first 0.5 s is probably a better approxi-
mation than assuming that it is constant for a full second, don’t you think? It seems, then, that
applying this approximation scheme using 0.5 s sub-intervals will result in a better approximation
for the position-time graph than using 1 s sub-intervals.

Now if you are good at programming, you can certainly construct an algorithm that will do this
calculation for sub-intervals of arbitrary size. Perhaps you can also produce an animation that
will trace out the resulting approximation to the position-time graph, or at least produce the
graph itself without an animation.

Here’s a good calculus-style question: By making the sub-intervals smaller and smaller, does
the approximation to the position-time graph get better and better? It might not be clear
how to even make such a judgement, considering that you might have no idea what the final
position-time graph should look like.

If you have some knowledge of physics — in particular the kinematics equations for motion in
a straight line with constant acceleration — then you will understand that the formula for the
position function of the moving ball is

y = —5t% + 25t

and so you will have something to check against as you test your algorithm. For readers who don’t
have this previous knowledge, you can give this challenge question some thought in preparation
for our in-depth discussion later in the book.
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Figure 9.8: The position-time graph and the velocity-time graph for the moving ball discussed in
the text.

GOOD QUESTION
Vertically thrown ball with air resistance

How would the position-time graph of a ball thrown vertically upwards be different if air resistance
were present? To explore this question you might begin by considering how the velocity-time
graph would be different (qualitatively). Perhaps sketch a new velocity-time graph based on the
one with no air resistance. Once you have done this, then you might follow a procedure similar
to the one described in the text to approximate a new position-time graph. Does your new graph
meet your expectations about it should look like? For example, should the ball return to the
thrower’s hand in 5 s, or less than 5 s, or more than 5 s? Should the ball’s maximum height
be equal to, more than, or less than the maximum height without air resistance? Should the
position-time graph with air resistance share the same symmetry properties as the position-time
graph without air resistance?

The full position-time graph is in Figure Does the graph seem reasonable? Does it have
the general features that make sense to you based on your experiments tossing a ball vertically
upwards? Are the graph’s symmetry properties reasonable? Does the slope of the position-time
graph at each time match with the height of the velocity-time graph at the same time? (Test this
at some times to convince yourself that this is so. You can do this by copying the position-time
graph into a notebook and sketching some tangent lines on it at various points, and then compare
the slopes of the tangent lines with the appropriate heights of the velocity-time graph. Note the
scales on the vertical axes!)

What happens at ¢t = 5 s? Does the speed change abruptly to zero and remain zero? The
behaviour of the ball after ¢ = 5 s is beyond the scope of this discussion. What happens depends on
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physically what happens to the ball. Does the ball bounce from a hard surface? Does the ball land
in mud and stick there without bouncing? Is the ball caught, and so brought to rest gradually?
All of these situations are very complicated, and the precise position-time graph after ¢t = 5 s will
be correspondingly complicated.

Anti-differentiation is a fundamental process in science, and will be discussed extensively later
in this book, but we can say a few words about it now to highlight its importance. Let’s think
about the ball thrown vertically upwards for a moment. To analyze its motion, one could start
with Newton’s second law of motion. The result of such an analysis would result in the ball’s
acceleration function, which you could plot on an acceleration-time graph. But you are likely to
be interested in other questions, such as the speed of the ball at various times, or the position
of the ball at various times. To obtain the velocity function from the acceleration function, one
anti-differentiates; this process is also known as integration, and will be discussed extensively when
we discuss the second main branch of calculus, integral calculus. To obtain the position function,
one then anti-differentiates (i.e., integrates) the velocity function.

Laws of physics are typically like this; they don’t directly tell us about quantities of primary
interest, but rather they give us relationships inovling the rates of change of quantities of primary
interest. Then it is up to us to integrate to obtain the quantities of primary interest.

For simple laws of physics, integration suffices. More sophisticated laws of physics are expressed
mathematically in terms of what are called differential equations, which are relationships among
derivatives of various quantities. The process of solving a differential equation is similar in spirit
to solving an integration problem, but may be more complicated.

All of this will be discussed later, but you now have a bit of a sneak preview and (one hopes)
a bit of insight into how the whole process works.

SANTO
Example: financial, with some value increasing or decreasing in time

can be made more complex by having a builder build houses at a certain rate, but the value
increases with time thanks to two influences; inflation and the building rate

Example: coefficient of expansion of water/ice

illustrates the complexity of models, the need to overlap various models that are inherently
limited, illustrates that models are limited, and illustrates the idea of a phase transition and how
difficult they are to understand/model

SUMMARY

In applications of calculus, it is often the rate of change of a quantity that is of primary impor-
tance. In differential calculus, the focus is on determining the rate of change for a given quantity.
In integral calculus, it is the rate of change of a quantity that is somehow known (from exper-
iment, for example, or from some other analysis), and the focus is on determining the function
that describes the quantity.
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Chapter 10

Theory, Part 1: The Formal
Definition of a Limit

OVERVIEW

In this section we study the state-of-the-art, best available conception of limit. The vague
definition we’ve used up to now is OK for starting out, but to work out limits in truly difficult
cases, we need a better definition. Not all first-year courses tackle the precise definition of limit;
some prefer to leave it for a second-year course. You will need it if you are interested in going
on to higher levels of mathematics, and if you are interested in the logical structure of calculus.
In this section we provide a step-by-step, intuitive introduction to the precise definition of the
limit. We also present fully worked out examples of calculating limits using the precise definition.
These step-by-step examples are accompanied by descriptions of the thinking process that are
meant to demystify what is typically a very challenging process for first-year students. As usual,
careful study and repetition is the key to mastery.

So far we’ve used an informal conception of limit to perform limit calculations. It has served us
well, for the cases we’ve looked at, but for more complicated limits, we need a more precise tool.
Describing this more precise tool, and getting a little bit of practice in its use, is the point of this
section.

This is an unusually long section, but deservedly so, because the formal definition of a limit is
notoriously challenging to understand and apply. We provide extensive discussion in this section,
along with examples that are worked out in a lot of step-by-step detail. Carefully going over the
discussion multiple times, and carefully working through the examples and exercises will help you
to understand the formal definition of a limit and apply it successfully. The spirit of argument in
this section is at the core of higher mathematical analysis, so anyone aspiring to higher levels of
learning mathematical analysis should study this section and the following ones seriously.

As we discussed earlier in the chapter, the early slope calculations by Newton, Leibnitz, their
contemporaries, and their predecessors, involved (in our modern notation) factoring h from the
numerator of the expression, then dividing numerator and denominator by h (which is valid provided
that h # 0), and then finally setting h = 0 to obtain the limit. They were well aware of the
contradiction inherent in the last two steps, and they tried to justify it as best they could, but their
arguments were not very convincing.

Newton’s attempt to make sense of this type of calculation in the late 1600s was to call h an
“infinitesimal,” a new sort of number, which was smaller than any non-zero positive number, but
not quite zero either! This justified ignoring it in the last step of the calculation (setting it equal to
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zero, in effect), yet allowed one to divide by it. Berkeley ridiculed this by questioning the existence
of these purported infinitesimals, saying they were akin to “ghosts of departed quantities.” OuchE|

By the mid-1700s, Denis Diderot embarked on a massive project: The construction of the first
encyclopedia in history. The literal meaning of encyclopedia is “circle of knowledge”: This was an
attempt to enclose all knowledge between the covers of a single set of books. The mathematician and
physicist d’Alembert wrote the article on calculus for Diderot’s encyclopedia, and he stated that the
foundations of the subject were still not finalized, but he had a strong feeling that mathematicians
would be able to sort things out properly using the newly developed concept of limit.

Around the same time, mathematicians were struggling to properly define the concept of func-
tion. Traditionally, it was thought that functions needed to be continuous, and needed to be
described by a single formula that was valid for the entire domain of the function. The work of
Fourier in the early 1800s called this limited view into question, and discontinuous functions and
other, more exotic types of functions began to become respectable. This influenced the develop-
ment of the limit concept in the following way: Although functions were often used to model the
positions of moving objects, so that it made sense to speak of the x-value “getting closer and closer
to some number” (as we continually did earlier in the chapter), mathematicians began to take a
more abstract approach. A function just s, they reasoned; nothing is moving anywhere. There
ought to be a way of calculating limits that respects this way of looking at a function.

For example, Dirichlet’s function cannot possibly describe the motion of any real object, but it
is nowadays considered to be a bona fide function:

1 if z€Q
D(x)_{o if ¢Q

You should devote a little bit of time to trying to visualize Dirichlet’s strange function, just so that
you can appreciate how strange it is. You should also convince yourself that it does indeed satisfy
the properties of a function, according to our modern definition of a function, and so therefore
really is a function.

All this led to the currently-accepted precise definition of the limit. The idea of using inequalities
to make the calculation of a limit more rigorous is due (independently) to Bolzano and Cauchy
in the early 1800s, and Cauchy in particular was instrumental in bringing a higher standard of
rigour in mathematical argumentation to the entire community. The currently-accepted definition
was formulated by Karl Weierstrass (who also introduced the current notation for the limit of a
function), and published by one of his students, Heinrich Eduard Heine, in 1872. Here is a currently
accepted version of this definition:

Tt’s interesting that in the 1960s, nearly 300 years after the work of Newton and Leibnitz, Abraham Robinson
was able to rehabilitate infinitesimals to respectability in his alternative foundation of calculus, which he called the
theory of nonstandard analysis.
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DEFINITION 8
Definition of the limit of a function

The function f has a limit L as x approaches a, in symbols

lim f(z) = L
provided that for each positive real number ¢ (that is, ¢ > 0), there exists a real number ¢ such
that
if 0<|r—al<d then |f(x)—L|<e

The symbols € and § that appear in the definition of limit are virtually universal, and the style
of arguments using inequalities based on it are therefore called e-§ arguments. They represent the
gold-standard of argumentation in mathematical analysis.

Most students find it challenging to understand the precise definition of limit, and challenging
to learn how to use it. But this is perfectly normal, and nothing to feel bad about. Remember
that it took the finest mathematical minds in the world two centuries to sort this out, so be patient
with yourself; if you work at it, you will be able to understand the precise definition of limit with
time and practice.

To explain this definition, we’ll attempt to connect it with our initial conception of limit; that
is, the sense that lim,_,, f(z) = L means that the values of f(z) get closer and closer to L as z
gets closer and closer to a. From this perspective, the precise definition of the limit formalizes the
notion of “getting closer and closer” with precision and without ambiguity.

Consider Figure which is a graph of the function f(z) =2z + 1.
From what we have learned previously in this chapter, we can conclude that

lim f(z) =7

r—3
In the imprecise language we have been using in this chapter so far, we would say that the previous
limit statement means that as x gets closer and closer to 3, the corresponding function values get

closer and closer to 7. Let’s now explain how to view this situation using the precise definition of
the limit.

The precise definition of the limit states that 7 really is the limit if for each positive value of ¢,
there exists a value of § such that a certain property is satisfied. The figure illustrates this for a
particular value of €, namely ¢ = 2. As we will explain in detail shortly, any value of § that is less
than 1 will work; in the figure, the value 6 = 0.75 is chosen.

Let’s write down the precise definition of the limit for the situation illustrated in the figure:
The function f(z) =2z + 1 has a limit 7 as x approaches 3, in symbols

lim () =7

provided that for each positive real number ¢ (that is, € > 0), there exists a real number ¢ such
that

if 0<|r—3]<d then |f(zx)—T7<e

Rewriting this in terms of the figure, the limit of the function as x approaches 3 is 7 provided that
for each € > 0 there exists a positive value of § such that for all the z-values in the blue band
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flx)=2z+1

T+e

Figure 10.1: This figure illustrates some of the reasoning that is used to show that the limit of the
function as x approaches 3 is equal to 7, using the precise definition of the limit. See the text for
the complete argument. The figure illustrates the situation for e = 2. In this case, § can be chosen
to be any positive number less than 1; the figure illustrates a value of § = 0.75.

defined by ¢ (except we don’t care about x = 3), the corresponding function values lie in the red
band defined by e¢.

Is this clear from the figure? It is unlikely that this will be clear unless you go through each
element of the statement, bit by bit. To begin, is it clear that | — 3| < § corresponds to the blue
region of the z-axis? Because § = 0.75 in the figure, we can make this inequality more specific:
|x — 3| < 0.75. In other words, this means all of the values along the x-axis that are within a
distance of 0.75 units of x = 3. This means all the z-values that are in the interval between 2.25
and 3.75, not including the endpoints. Is it now clear that the condition |z — 3| < 0.75 means all of
the z-values in the blue band along the z-axis in the figure? If not, you may wish to substitute some
selected z-values into this condition, observing that z-values in the blue band satisfy the condition,
but z-values outside the blue band do not satisfy the condition. For example, for z = 2.8,

|t —3|=28—-3]=]-0.2|=0.2
and this value is indeed less than 0.75. On the other hand, for z = 1.6,
|t —3|=16-3|=|—-14|=1.4

and this value is not less than 0.75. Continue to test a few other values both inside the blue
interval and outside it until it becomes clear to you that the condition |z — 3| < 0.75 is represented
graphically by the blue band along the x-axis.
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Next, do the same with the condition |f(z) — 7| < €. For the value of € = 2 that we have chosen
for the figure, this condition is |y — 7| < 2. In other words, this means all of the values along the
y-axis that are within a distance of 2 units of y = 7. This means all the y-values that are in the
interval between 5 and 9, not including the endpoints. This corresponds to the red band of values
along the y-axis in the figure. If this is not yet clear to you, then substitute some values of y into
the condition to become familiar with which values satisfy the conditions and which do not.

Continuing, let’s now understand the difference between the condition that we studied earlier,
|z — 3| < 0.75, and the slightly different condition that is actually in the definition of the limit,
which is 0 < |z — 3| < 0.75. This latter condition means all of the z-values that satisfy both the
condition |z — 3| < 0.75 that we have already studied and the condition 0 < |z — 3|. Let’s now
study this; which values in the blue interval along the z-axis also satisfy the condition 0 < |z — 3|7
In other words, which of the values in the blue interval along the z-axis has a distance to 3 that is
greater than 07 If you are standing at any point in the blue interval along the xz-axis your distance
to 3 will be greater than 0, unless of course you are standing right at the value x = 3. Thus, the
value x = 3 does not satisfy the new condition, but every other value in the blue band along the
z-axis does satisfy the new condition.

Now that we have understood these elements, let’s go back and consider the complete limit
statement: 7 really is the limit of the function as x approaches 3 provided that for each value of
€ > 0, there exists a value of § > 0 such that for each value of z in the blue band along the z-axis
(excluding x = 3), the corresponding function values lie within the red band along the y-axis. You
can see that this is true from the figure. Note that the part of the graphed line that is drawn in
blue lies completely within the red shaded band.

The definition of the limit states that 7 really is the limit of the function as x approaches 3
provided that for each value of € > 0, there exists a value of 6 > 0 such that for each value of x in
the blue band along the z-axis (excluding = = 3), the corresponding function values lie within the
red band along the y-axis. The figure shows just one value of &, so once we have fully understood
the situation for this one value of € we should consider other values of e. The condition states
that 7 is the limit provided that for each value of ¢ > 0, there exists a value of § that works; for
the particular value ¢ = 2, we have demonstrated that the value § = 0.75 “works” in the sense
that it satisfies the specified condition. Is it clear that other values of § also work? The condition
only requires that one suitable value of § exists, but by studying the figure we can see that there
are an infinite number of §-values that work. For example, choosing a (positive) value of § that is
smaller than 0.75 also works; a smaller value just makes the blue interval along the xz-axis smaller,
which means that the stretch of the graphed line that is coloured blue is also smaller, but it still
lies entirely within the red shaded band, so the limit condition is still satisfied. Making the value
of § slightly greater is also fine, provided that it is not too big. Once the value of § reaches 1,
the limit condition fails, and the limit condition will continue to fail if 6 > 1. This is illustrated
in Figure for a value of § = 1.25. Note that in this case the corresponding band of function
values does not lie entirely within the red band, so the limit condition is not satisfied. This is the
case for all values of § > 1.

Let’s sum up what we have discussed so far. For a particular value of £, namely ¢ = 2, we have
demonstrated that it is indeed possible to select a value of §, namely any value between 0 and 1,
not inclusive, that satisfies the limit definition. In order to really be convinced that the limit of the
function as x approaches 3 is 7, we would have to show that the same limit condition is satisfied
for each positive value of €. That is, we would have to show that for each positive value of €, it is
indeed possible to choose a value of § that would satisfy the limit condition.

Based on the graph in Figure does this seem possible? Yes, doesn’t it? After all, if
you shrink the red band vertically (that is, by using a smaller value of €), we should still be able
to choose a value of § that will work, although the value of 4 might have to be smaller. Consult
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flx)=2z+1

T+e

Figure 10.2: This figure continues the discussion of the reasoning that is used to show that the
limit of the function as x approaches 3 is equal to 7, using the precise definition of the limit. See
the text for the complete argument. The figure illustrates the situation for e = 2. In this case, ¢
can be chosen to be any positive number less than 1; the figure illustrates a value of 6 = 1.25. This
value is not suitable for proving that 7 is the limit, because it does not satisfy the condition stated
in the precise definition of the limit. The point is that values of § that are less than 1 satisfy the
condition, but values that are greater than or equal to 1 do not satisfy the condition.

Figure and study the situation for € = 1; is it clear that the limit condition is satisfied provided
that you choose a value of § that is less than 0.57 The figure illustrates a choice of § = 0.25; notice
that for this choice, the band of function values for all z-values within the blue band lies entirely
within the red zone. Thus, for € = 1, the limit condition is satisfied for this choice of §. Is it clear
that any smaller positive value of § will also work? A smaller value of ¢ just means that the blue
band will be smaller, and so the corresponding function values will still lie within the red zone.

For larger values of ¢, it is “easier” to find values of § that will satisfy the limit condition. Can
you see this from the graphs in the previous three figures? Larger values of € mean a wider red
zone, so even a wider blue band will result in function values that lie entirely within the red zone.

In summary, it seems possible to satisfy the limit condition no matter which value of ¢ is given.
No matter how narrow the red zone we are presented with, it seems to be possible to choose a small
enough blue band so that all the corresponding function values lie within the red zone.

Does this convince you that the limit of the function as x approaches 3 really is 77 Perhaps yes,
perhaps no, but in any case, we really should provide a symbolic proof using algebra. It is very easy
for humans to fool themselves, and in the history of mathematics there are many famous examples
of supposed facts that were thought to be true for a while, until someone thinking more carefully
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flx)=2z+1

Figure 10.3: This figure continues the discussion of the reasoning that is used to show that the
limit of the function as x approaches 3 is equal to 7, using the precise definition of the limit. See
the text for the complete argument. The figure illustrates the situation for € = 1. In this case, ¢
can be chosen to be any positive number less than 0.5 in order to satisfy the limit condition; the
figure illustrates a value of 6 = 0.25.

showed that they were in fact not true. Thus, although geometric reasoning (including the drawing
of figures) is a marvelous aid to understanding, it should not substitute for symbolic proofs, which
have been the standard of rigour in mathematics for centuries. We’ll provide a symbolic proof
shortly, but before we do so, let’s continue to study the figure to make sure that we have fully
understood the situation.

Our earlier, rough sense of limit was that if

lim f(z) =L

r—a
this means that as x gets closer and closer to a, the function values get closer and closer to
L. The precise definition of limit can also be interpreted in this way, but without the movement
(“approaching”) that is explicit in our previous treatment. The “for all € > 0” part of the definition
allows us simulate the “approaches L” part of our previous approach to limits. That is, if the limit
really is L, then if we make € progressively smaller, the values of  that work also get progressively
smaller, but they still exist.

You can think of the precise definition of limit as a sort of game. You propose the value of a
certain limit. Your opponent then challenges you by giving you a positive value of €, and your task
is to come up with a value of § that satisfies the limit condition. If you are able to come up with
a value of § that works, then you win. It doesn’t matter that an infinite number of §-values work,
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all you need to do is come up with a single value that works and you win. If you always win, no
matter which value of € your opponent challenges you with, then your guess about the value of the
limit is correct.

If for even one value of ¢, it’s not possible for you to come up with a value of § that works, then
you lose the game. Maybe you were wrong with your guess about the value of the limit; maybe
there is no limit.

You can even think of this game being automated, like an e-sport. The user gets to input the
value of € that they choose, and then the program should output a value of § that works, if one
is possible. Imagine programming such a game; you would need an algorithm to respond to every
possible user input by calculating a suitable value of § and then outputting the result. Think about
this. How would you program such a game? After reflecting on this question for a while, you will be
prepared for the proofs that we present later in this section, because the thought processes behind
the proofs are the same as those needed to program the computer game algorithm.

We’ll get to the proofs shortly. Before we do so, it’s worth emphasizing again that our previous
conception of the limit, with quantities “getting closer and closer to” various values, has been
replaced in the formal definition of the limit by the freedom of choice about the value of € that
our “opponent” has in the e-sport game. If the opponent tries various values of e, making the
value smaller each try, then the allowable values of  that we can respond with are more and more
restricted each try. This allows us to interpret the process of successively playing the game by
thinking in terms of values getting closer and closer to target values, if we wish, but there is no
motion inherent in the definition. Nothing is moving anywhere; the opponent just selects a positive
value of €, and then we have to respond with a suitable value of § if we wish to win the game.

Once you have gone over the previous pages, and carefully examined the previous figures, you’ll
be ready to absorb the formal proof that

lim f(z) =7

for the function f(z) = 2z + 1, using the formal definition of the limit. In order to complete the
proof, we have to demonstrate that no matter which positive value of ¢ is given, we are able to
counter with a value of § that satisfies the limit condition. There are an infinite number of choices
for €, so how will we be able to efficiently counter each given value of € with a suitable value of §7?
It would be a pain to have to figure it out from scratch every time; it would be a lot better if we
had a formula that connected the two values, so that when we are presented with a value of ¢, all
we have to do is run it through our formula and then we would know which values of § will work.
Such a formula would allow the e-sport game to work, as mentioned earlier.

It might be helpful to tabulate the results we have obtained so far for the two given choices of

€:
given value of € | values of ¢ that work
€=2 0<éd<1
e=1 0<0<0.5

Interesting, isn’t it? Could it be that the maximal value of § that works is exactly half the given
value of €7 It would be good for you to go back to one of the three previous figures and carefully
examine it. It does indeed seem so, doesn’t it? It has to be connected to the fact that the slope
of the graph is 2, right? Imagine if the slope of the line were different; how would that affect the
relative sizes of the red and blue strips? It would be good for you to draw a few sketches and play
with this idea so that you will understand it thoroughly.

Now that you have played with this sufficiently, it is time to go through the formal proof. The
steps in the formal proof are always the same:



133

e Guess what the limit is.

e Figure out the relation between § and €. That is, state the values of § that work for a given
value of ¢.

e Show that your way of choosing § for a given e really does work.

Note that the proof method we are about to present does not tell you what the limit is. You
have to figure that out in some other way. Once you have figured out what the limit is, the method
we are about to present will verify that your guess is correct. If you guess the value of the limit
incorrectly, then your attempt at a proof will fail (as we shall see in an example later).

EXAMPLE 23

Proving a limit using the formal definition

Use the formal definition of limit to prove that lim,_,3 f(x) = 7 for the function f(z) =2z + 1.
SOLUTION

Having studied this situation for several pages now, we expect that the limit is 7, and we con-
jecture that choosing § = ¢/2 will do the job. Let’s prove this.
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For each value of € > 0, choose § = ¢/2. Consider the values of = for which
0<|z—-3|<d
That is,

3
0 -3 =
< |z !<2

Multiplying each term on the previous line by 2, it follows that the next inequality is valid for
the same values of z:

0<2z—-3|<e
This means that the next inequality is also satisfied for the same values of z:
0<|]2x—6]<e

The next inequality is equivalent to the previous one, and so is also satisfied for the same values
of x:

O<]2r4+1-T7<e

In other words, the next inequality is also satisfied for the same values of x:
0<|flz)—T7<e¢

And the next inequality is also satisfied for the same values of z:

[f(z) =7 <e

This completes the proof.

The reason the proof is complete is that we have shown that for each positive value of ¢, there
exists a positive value of §, namely 6 = £/2, such that the values of x for which 0 < |z — 3| < ¢
are the same as the values of x for which |f(z) — 7| < e. In other words, for each £ > 0, there
exists a 0 > 0 such that if 0 < |z — 3| < 4, then |f(z) — 7| < e.

By the formal definition of limit, this proves that

lim f(z) =7

r—3

Having worked through the previous example, it’s worthwhile writing out the proof for yourself,
line-by-line, with e replaced by 2 and 0 replaced by 1. Then compare your work to Figure [10.1}
Notice that the value of § illustrated in Figure is less than 1. This is a reminder that any
positive value of § less than £/2 will work just as well as 1 in the proof. Once you have digested
this, then write the proof out a second time, but this time replace € by 1 and replace § by 0.5.
Again, note the value of ¢ illustrated in Figure is less than 0.5. An infinite number of § values
will work, provided that they are all less than £/2. Choosing any valid value of § will get the proof
to work.

You might like to write the proof out again a few times, each time choosing different values of
e, and sketching a graph labelled like Figure with red and blue bands. Doing this will help
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you understand the ideas behind the formal proof.

The last sentence of the previous example can be paraphrased by saying that x values that
are close to 3 lead to y-values (i.e., function values) that are close to 7. Although this is a vague
statement (“close” is imprecise), it is a useful way of connecting the new precise concept of limit
with the earlier, vaguer one. And “close” can be made precise; in fact it is stated very precisely in
the last line of the previous example. Along the z-axis, “close to 3” means “within a distance § of
3,” and along the y-axis, “close to 77 means “within a distance ¢ of 7.”

Recall that one of the primary purposes of limits is to calculate slope values for the graphs of
functions. Recall that in such calculations, a graph of the slopes of secant lines sketched from a
particular point on the graph of a function has a hole discontinuity. Therefore, to be effective for its
intended purpose, limit calculations must ignore the actual function value at the point of interest.
This explains why in the precise definition of the limit we use

0<|z—al<d
instead of
|z —al <9

When calculating the limit of a function at a particular point, we’re not allowed to care about the
actual function value at that point, because for a very important case of interest there will be no
function value at that point. By excluding the point of interest from the limit definition, we will
be able to apply the definition effectively even where there is a hole discontinuity.

In the next example we apply the definition of limit in another simple situation. Consider the
same function as before, but consider the limit at another point.

EXAMPLE 24
Proving a limit using the formal definition

Determine lim,_,2(2z + 1), and then use the formal definition of limit to prove your result.
SOLUTION

The function f(z) = 2x + 1 is continuous for all values of z, so we know from our previous work
that we can determine the limit by substitution. The result is f(2) = 2(2) + 1 = 5. Let’s prove
this using the formal definition of limit. Consider Figure [10.4] as a guide.

For each value of € > 0, choose § = ¢/2. We make this guess based on our earlier work with this
function.

Consider the values of x for which
O0<|z—2]<¢

That is,
£

O<|z—2|<
-2 < 2
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Multiplying each term on the previous line by 2, it follows that the next inequality is valid for
the same values of x:

0<2lz—2|<e
This means that the next inequality is also satisfied for the same values of z:
0<|2z—4|<e

The next inequality is equivalent to the previous one, and so is also satisfied for the same values
of z:

0<[]2z+1-5|<e

In other words, the next inequality is also satisfied for the same values of z:
0<|f(z)—5<e

And the next inequality is also satisfied for the same values of z:

[f(z) -5 <e

This completes the proof. We have shown that for each € > 0, there exists a § > 0 such that if
0 < |z —2] <4, then |f(z) — 5| < e. By the formal definition of limit, this proves that

lim f(z) =5

r—2

flz)=2z+1

Figure 10.4: The figure illustrates the maximum value of § that will work in a proof that the limit
of the function f(x) = 2x+1 as x approaches 2 is 5 using the precise definition of limit. All smaller
positive values of § also work. See text for complete argument.

Earlier we discussed the possibility that the slope of the graph of the function influences the
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range of choices for ¢ that work for a given . If you played with this thought by sketching some
graphs you may have agreed with this. Completing the following exercises will reinforce this idea.

EXERCISES

(Answers at end.)

Guess each limit. Then use the precise definition of limit to prove that your guess is correct.
Illustrate your work by sketching a graph in each case.

1. lim (3z + 2) 2. lim (4z + 1)
z—1 T—2

3. lim (0.2x — 3) 4. lim (0.5z +4)
T—3 z—0

5. lim (22+49) 6. lim (—2x-1)
r——1 r——2

7. lim (=3z—1) 8. lim (6)
z——3 z—0

Answers: 1. limit is 5; choose § = /3 for the proof, but smaller positive values also work
. limit is 9; choose § = /4 for the proof, but smaller positive values also work

. limit is —2.4; choose § = 5¢ for the proof, but smaller positive values also work

. limit is 4; choose § = 2¢ for the proof, but smaller positive values also work

. limit is 7; choose § = £/2 for the proof, but smaller positive values also work

. limit is 3; choose § = /2 for the proof, but smaller positive values also work

. limit is 8; choose § = /3 for the proof, but smaller positive values also work

0 N O Ot ke W N

. limit is 6; all positive values of § will work in the proof

Now that you have practicing proving various limits in simple situations, to internalize the
process, let’s now move on to some more challenging situations. The following example is exactly
like the previous few examples; in fact it generalizes them.

EXAMPLE 25
Proving a limit using the formal definition

Determine lim,_,q(mz + b), and then use the formal definition of limit to prove your result.
SOLUTION

The function f(z) = max + b is continuous for all values of z, so we know from our previous work
that we can determine the limit by substitution. The result is f(a) = ma + b. Let’s prove this
using the formal definition of limit.

For each value of € > 0, choose § = ¢/m. Is this guess reasonable based on the practice exercises
that you completed earlier?

Consider the values of x for which

O0<|z—a|]<d
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That is,
0<|z—a| < £
m

Multiplying each term on the previous line by m, it follows that the next inequality is valid for
the same values of z:

0<mlz—al<e
This means that the next inequality is also satisfied for the same values of x:
0 < |mx—mal <e

The next inequality is equivalent to the previous one, and so it is also satisfied for the same
values of x:

0<|mz+b—ma—>bl<e

In other words, the next inequality is also satisfied for the same values of x:
0<|f(z)—(ma+b)|<e

And the next inequality is also satisfied for the same values of x:

|f(x) — (ma+b)| <e

This completes the proof. We have shown that for each € > 0, there exists a 6 > 0 such that if
0 < |z —a| <9, then |f(z) — (ma+b)| < e. By the formal definition of limit, this proves that

lim f(z) =ma+b

Tr—a

Does the choice of ¢ in this example make sense compared to the choices you made in the previous
exercise set? Can you sketch a graph in this case that makes the choice clear?

Now let’s discuss functions that have jump discontinuities. Consider the function
-1 if <3
J(@) = { 1 if >3

which is illustrated in Figure [10.5

Y

Figure 10.5: The figure illustrates a function with a jump discontinuity at * = 3. Because of the
jump discontinuity, the limit of the function as  — 3 does not exist.
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Recall from our previous work earlier in this chapter that the limit of the function in Figure[10.5
as x — 3 does not exist. We described this earlier in the chapter by noting that

lim f(z) =1 and lim f(x)=-1
z—3+ x—3~
Because the left limit is not equal to the right limit, the limit does not exist. It’s possible to

understand that the limit does not exist from the perspective of the precise definition of the limit;
study Figure [10.6]

Y
1+e¢
1
1—¢

3—0-" 3 \

3496

Y

Figure 10.6: The figure illustrates a function with a jump discontinuity at x = 3. Because of the
jump discontinuity, the limit of the function as  — 3 does not exist. By studying the red and blue
strips you will be able to understand from the perspective of the precise definition of the limit why
this limit does not exist.

Suppose that someone tells you that the limit of the function in the previous figure as z — 3
exists and is equal to 1. If you try to prove this using the precise definition of limit, you will soon see
that this is not possible. Consult Figure For the value of € shown in the figure, is it possible
to choose a value of § such that for all = values that satisfy 0 < |z — 3| < §, the corresponding
function values satisfy |f(x) — 1] < €7 In other words, is it possible to choose a vertical blue strip
of some width, centred at = 3, such that for all z-values within the blue strip the corresponding
function values are within the red horizontal strip?

Is it clear from the figure that this is impossible? The blue strip includes function values from
both branches of the function, and the ones on the lower branch lie outside the red strip. No matter
how thin you make the blue strip, it will always contain some function values on the lower branch
of the function, which means that these function values will lie outside the red strip. Therefore,
using the precise definition of the limit, it will be impossible to prove that 1 is the limit.

Sure, if you make the red strip wide enough (i.e., choose € large enough) it will include all
function values, and then any value of § will work. But remember that the precise definition of
limit requires that the limit condition be satisfied for each value of e. We have no control over
the value of €. To prove that a certain value is the limit, the limit condition must be satisfied no
matter how small the value of ¢ is.

A similar argument shows that it is not possible to prove that the limit of the function is L,
no matter what value of L is proposed. Therefore, the limit of the function as x — 3 does not
exist. You will be able to understand this by re-drawing Figure [L0.6| and sketching various thin,
horizontal “red” strips, centred at a proposed limit value. No matter what proposed limit value is
chosen, if the red strip is drawn thin enough (that is, if a sufficiently small value of ¢ is given), it
will be impossible to choose a blue strip centred at x = 3 such that all z-values in the blue strip
correspond to function values that all lie within the red strip. Try it for yourself!

I trust the graphical reasoning in the previous paragraphs is convincing to most, but if you really
wish to prove that the limit of this function does not exist as * — 3, how should you proceed?



140 CHAPTER 10. THEORY, PART 1: THE FORMAL DEFINITION OF A LIMIT

A little bit of logic is required. The definition of limit is: lim,_,, f(x) exists and is equal to L
provided that for each € > 0, there exists a § > 0 such that

O0<|z—a|<d = |f(x)—L|<e

The double-arrow symbol on the previous line can be read as “implies,” and can also be read as
“if the first condition is true then so is the second condition.” In logic, such implications are called
“if-then” statements.

The logical structure of the definition of limit is therefore the limit exists provided that
if A is true, then B is also true, where A represents the condition just before the implication
double-arrow, and B represents the condition just after the implication double-arrow. To disprove
such a statement, you would have to show that there exists at least one value of ¢ for which there
is no value of ¢ for which the implication

O<lr—al<d = |f(z)—Ll<e

is valid. (As we have been doing, let’s call the previous line the limit condition.) Study Figure m
and you will see how to choose a suitable value of ¢; just make sure that € is small enough so that the
horizontal red strip does not include both branches of the function. The vertical distance between
the two branches is 2 units, so anything less than this will do; for example, just take ¢ = 0.1.

With this value of ¢, let’s try to prove that
lim f(z) = L

for the function f illustrated in Figure [I0.6] for various values of L. Once we fail to do so for all
possible values of L, we will be forced to conclude that this limit does not exist. We’ll argue two
cases; Case 1 is the supposition that L > 0, and Case 2 is the supposition that L < 0.

Case 1: Suppose that L > 0. (Actually select a value of L and label it on your own hand-drawn
copy of Figure [10.6] as this will help you to follow the argument. Then label each step of the
following argument on your diagram.) No matter how small you select a positive value of ¢, for
x* =3 —79/2, it is true that |z* — 3| < ¢ (verify this!), and yet it is also true that f(z*) = —1, and
therefore it is also true that |f(z*)—L| > 1 (verify this!), and so it is not true that | f(z*)—L| < €.
Thus, for € = 0.1, there is no value of § for which the limit condition is satisfied.

Case 2: Suppose that L < 0. (Actually select a value of L and label it on your own hand-drawn
copy of Figure [10.6] as this will help you to follow the argument. Then label each step of the
following argument on your diagram.) No matter how small you select a positive value of 4, for
™ =340/2, it is true that |z** — 3| < ¢ (verify this!), and yet it is also true that f(z**) =1, and
therefore it is also true that |f(x**)—L| > 1 (verify this!), and so it is not true that |f(z**)—L| < e.
Thus, for € = 0.1, there is no value of § for which the limit condition is satisfied.

Therefore, no matter which value of L we propose as the limit of the function as x — 3, there is
at least one value of € (namely e = 0.1) for which there is no value of § for which the limit condition

O<lr—al|<d = |f(z)—Ll<e

is valid. There are always some values of x for which the limit condition fails.

This completes the proof that
lim f(x)

x—3
does not exist.

The next example illustrates that the precise definition of the limit is also effective when applied
to functions with a hole discontinuity.
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EXAMPLE 26
Using the precise definition to verify a limit

Guess the limit and then use the precise definition of limit to verify your guess.

222 —5r—3
hm _——
x—3 x—3

SOLUTION

Following our usual practical strategy for evaluating limits, we first substitute 0 for x in the
expression; the result is that both numerator and denominator are 0. Because both numerator
and denominator are polynomials, this is a sign that they have a common factor; by the factor
theorem, the common factor is (x — 3). Factoring the numerator results in 222 — 5z — 3 =
(x —3)(2x 4+ 1).
: . 222 — 5 —3 |
When the common factor is cancelled, we see that the function g(z) = —_g3 = nearly
7 —

identical to the function f(z) = 2x + 1 that we have studied extensively. The only difference is
that f is continuous at x = 3, but g has a hole discontinuity at x = 3.

You can use the formal definition of limit to prove that
222 — 5z — 3

iy ———o— =7

exactly as was illustrated earlier in this section. Try it for yourself, following the same steps as
before.

We have seen that for a function with a jump discontinuity, the limit of the function as x
approaches the point of discontinuity does not exist. But there are more complicated ways that
lim,_,, f(z) might not exist. For example, consider the Dirichlet function defined earlier:

1 if z€Q
MM_{Oifx¢Q

I don’t think it’s possible to form an accurate mental image of a graph of this function. (Try it and
let me know if you succeed.) It’s somewhat like the union of two parallel lines, one at y = 1 and
the other at y = 0, but each line is riddled with holes in a strange way. Between any two points
on each line, there are an infinite number of other points that lie on the graph, but also an infinite
number of holes, which represent points that do not belong to the graph.

The Dirichlet function is discontinuous at every single point in its domain. This means that

lim D

25 P)

does not exist for each real value of a. Using our previous conception of limit, you can see that as x
approaches any particular value a, the corresponding function values jump around between 0 and
1, so there is no single trend in function values. Is it possible to understand that the limit does not
exist using the precise definition of limit?

To be precise about why the limit discussed in the previous paragraph does not exist, consider
a small value of ¢, say ¢ = 0.3 (any value between 0 and 1, not inclusive, would also serve). No
matter how small we make §, there will always be values of z within a distance ¢ of 2 such that
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there are corresponding values of f(z) outside the red strip. Thus, the condition specified by the
definition of the limit cannot be satisfied, and so lim,_,2 D(x) # 1. Similar arguments show that
lim, 9 D(x) # 0. In fact, for any other value of L that we might try, similar arguments show that
L is not the limit. Thus, lim,_,» D(x) does not exist for Dirichlet’s function.

Similar arguments show that lim, ,, D(z) does not exist for Dirichlet’s function, no matter
which value of a is chosen.

The Dirichlet function is extreme in that it is discontinuous at each point in its domain. The
following function is also extreme, although it is continuous for all values of x except at x = 0,
and it is defined for all real values of x; what makes this function unusual is that it wiggles more
and more wildly as x — 0. That is, the wiggles become narrower and narrower as x — 0. If the
graph represented an oscillating object, with amplitude plotted against time, then the frequency of
oscillation increases without bound as x — 0.

0 it =0
9(z) = sin (1) if x#0
x

You might expect this graph to have “wiggles” in it, much like the graph of y = sin x, and it does,
but in a more complicated way. For x > (7/2)7!, and for # < —(7/2)~!, the graph has no wiggles,
but makes a smooth approach to the asymptote y = 0. However, for —(7/2)"! < z < (7/2)71,
there are infinitely many wiggles, and they become squeezed more and more closely together as
x — 0. Once again, this is difficult to graph; see Figure [I0.7] for an attempt.

Figure 10.7: This strange function “wiggles” an infinite number of times near x = 0. The limit of
this function as * — 0 does not exist.

1
Does the graph make sense? Think about the graphs of y = — and y = sinz, both of which
x

you studied in high school. You know that the sine function is periodic, with period 27. Every
time the argument of the sine function changes by 27, its graph makes a complete cycle. But the

argument of the sine function in the graph of g in Figure [10.7|is —; how does this quantity cycle
x

1
through periods of 27w as = changes? (Sketching a rough graph of y = — right now will help you
T
1
follow the argument.) For very large values of z, the values of — are quite close to zero. How far to

the left do you have to move along the x-axis before the value of — reaches 2w, which would take
x
the sine curve through its first cycle (moving from right to left)? You can determine this by setting
— =27
x
The result is
1

= — ~0.16
v 2T
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Does this seem reasonable from the graph? When is the next cycle complete, moving from left to
right? Set
1

— =4
x

and solve for x to obtain

1
= —~0.08
v a7
Continuing the calculations in this way, you will understand that the wiggles in the graph of g

become more and more squished together as you approach the origin moving from right to left.

Alternatively, you could ask for the locations of the zeros of the function g. They occur every
time the argument is an integer-multiple of w. Moving from right to left towards the origin, the
first zero occurs at

1
r=—~0.32
m

the next zero occurs at
1 0.16
r=— = U.
27

the next zero occurs at

T = i ~ 0.11
3
the next zero occurs at
T = i ~ 0.08
47

and so on. You can see that the spacing between adjacent zeros decreases as you move towards the
origin from right to left.

Because sine is an odd function, the graph of g has similar behaviour to the left of the origin,
but with opposite sign.

OK, now that we have understood the graph of g, let’s return to our discussion of the limit of g
as z — 0. The same sorts of arguments used for the Dirichlet function also show that lim,_,q g(z)
does not exist. What could the limit be? Could it be 07 No, because consider a small value of ¢,
let’s say € = 0.5 (although any value between 0 and 1 not inclusive will serve). Then no matter
how small ¢ is made, there will always be values of  within a distance § of 0 such that there are
corresponding function values g(z) that are outside the red e-strip. The same is true no matter
what value of L we propose for the limit, so the limit does not exist. The problem is that the
wiggles all have amplitude 1, and they get crammed together so tightly as  — 0 that no matter
how small you make §, there are still an infinite number of wiggles in the blue §-strip.

Note that in applying the precise definition of the limit, we must supply a guess for the limit L;
then the definition gives us a way of confirming or denying that the supposed limit L is true. The
definition itself does not gives us a way of guessing the limit; that must be done independently,
before we apply the definition to verify whether the guess is correct or not.

Why doesn’t the part of the precise definition of limit that reads 0 < |z — a| < ¢, instead read
as |r —al < 67 Why is the “< 0” included? As you’ll recall from our initial discussion of slope
calculations, when using limits to calculate slopes, we have to avoid the point © = a, for otherwise
we would be dividing by 0. Since calculating slopes (via the definition of the derivative as a limit)
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is one of the major applications of limits, we have to be careful to exclude any reference to the
function value at z = a into the definition of limit.

Now let’s look at some other examples where the limit exists, and we’ll see how we can use the
precise definition of the limit to verify that our supposed limits are ValidE]

EXAMPLE 27
Using the precise definition of limit to prove the limit of a quadratic function

Evaluate the limit and then use the precise definition of limit to prove your guess correct.

lim (x2)

r—2

SOLUTION

The first step is to guess the limit. Quadratic functions are continuous for all real values of x,
so we can determine the limit by substitution. Thus, we know that the limit is

i) = e
. 2 o
i) =4

The next step is to use the precise definition of limit to prove that 4 is indeed the limit. To do
this, we must first figure out how to choose § for a given ¢; that is, we would like to have a simple
formula for § in terms of £ that will do the job. There are various ways to do this; I'll display a
method that is popular in calculus textbooks, but be aware that other methods will also work.

According to the precise definition of limit, to prove that 4 is the limit, we must show that for
each positive value of €, there exists a positive value of § such that for all  values that satisfy

O<|zr—2/<$§
the inequality
|22 — 4| < e

is also satisfied. To prove this, it is helpful to have a formula for § in terms of ¢, and a simple
formula is preferable. Recall from our previous work with using the precise definition of limit
that once you find an acceptable value of §, using a smaller value of § also works. Thus, there is
no harm in restricting our attention to a small strip of values near z = 2. For example, we could
restrict ourselves to the strip of values 1 < x < 3. Or we could restrict ourselves to a smaller or
larger strip, without any harm. We still have the task of determining a suitable value of § for
each given ¢, but there is no harm in restricting our search to this small strip of values.

In an attempt to obtain a simple formula for § in terms of €, note that

2 —4=(x—-2)(z+2)

2The practical point of having the precise definition of the limit is that it allows us to verify limits in cases where
the intuitive approach is inconclusive. But, as with all new concepts, it’s worthwhile practising the precise definition
on easy cases at first.
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Because we are restricting our attention to the values 1 < = < 3, it follows that |z + 2| < 5.
Thus,

|2® — 4] < 5|z — 2|
If we further restrict the values of x so that
lr —2| <6
then it follows that
|z? — 4] < 56
Is the desired relation between & and € now clear? We wish to ensure that
|22 — 4| < e

and by comparing the previous two relations, we can arrange for the limit condition to be satisfied
by choosing 55 = ¢ (as well as restricting z-values to the interval 1 < x < 3), which is equivalent
to choosing

13
°=3

(Of course, any smaller value of § will work just as well.) Having figured out a suitable choice for
4, the last step in the proof is to verify that it works. So, for a given positive value of ¢, choose
0 = ¢/5, and consider the values of = that satisfy

O0<|z—2]<¢

For these same values of x, the following relation is also satisfied:
€

rT—2| < =
-2l < £

In other words,
€

O<lzr—2/<d = |yc—2|<5

Multiplying both sides of the second inequality by |z + 2|, we obtain

elz + 2|

O<|lz—2/<d = Jz—2|-jz+2|< 3

Because |x + 2| < 5, if we replace |z + 2| by 5 on the right side of the second inequality, the
statement is still valid; after all, we are taking a valid inequality and making the larger side even
larger. Therefore,

O0<|r—2/<d = \(a:—2)(:c+2)|<€(55)

which is equivalent to
O<|lr—2l<6 = |2*>—-4|<c¢

And this completes the proof. Given any positive value of €, we have shown that there exists a
positive value of § such that the limit condition on the previous line is satisfied. Therefore,
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lim (xQ) =4

r—2

Does the proof make sense? Does Figure help you to make sense of the proof?

y
A
flz) =a?
4 4 € ot
abo |
L

A

Figure 10.8: The figure may be helpful in understanding the proof (using the formal definition of
limit) that the limit of the function f(x) = 2? as  — 2 is equal to 4. The figure illustrates values
ofe=1and 6 =0.2.

Figure illustrates the previous example for values of ¢ = 1 and § = 0.2. Studying the
dashed lines in the figure, one notices that the value of & chosen in the example works just fine,
and of course any value less than £/5 would also work just fine. However, there is a bit of daylight
between the vertical blue strip and the outside vertical dashed lines, which means that slightly
larger values of § would also work. An important point is that for the purposes of the proof, we
don’t care about optimizing this; we don’t care that our value of § is the largest one possible,
we just need to find a value of § that works. Nevertheless, the curious among us will wish to
explore this little gap, wouldn’t we? As we studied earlier, for a linear graph with slopes m, good
choices for ¢ are 6 < e/m. What is the maximum slope of the stretch of graph within the red
strip in Figure Would choosing a value of § equal to € divided by this maximum slope also
work? Would even slightly larger values of § work? Are these slopes even relevant? None of these
questions are important for the proof just presented, but a student with a certain kind of curiosity
might enjoy exploring them, and they might lend either a bit more insight or a bit more confidence.
Sketch some lines on your copy of the figure and let me know how it goes!

The following example is similar to the previous one, but with a quadratic function that is a
little more general.
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EXAMPLE 28
Using the precise definition of limit to prove the limit of a quadratic function

Evaluate the limit and then use the precise definition of limit to prove your guess correct.

m (32* + 5z — 7)

i
r—2

SOLUTION

The first step is to guess the limit. Quadratic functions are continuous for all real values of z,
so we can determine the limit by substitution. Thus, we know that the limit is

lim (32° + 52 —7) = 3(2)°+5(2)—7

r—2

lim (32> + 52 —7) = 15

r—2
The next step is to use the precise definition of limit to prove that 15 is indeed the limit. To
do this, we must first figure out how to choose § for a given ¢; that is, we would like to have a
simple formula for ¢ in terms of € that will do the job. As mentioned in the previous example,
there are various ways to do this; I'll display one method, but variations will also work.

What we have to show is that for each given € > 0, there is a § > 0 such that for all z that
satisfy 0 < |z — 2| < 0, the inequality |f(z) — 15| < ¢ is also satisfied. That is,

O0<lz—2/<é = |[(B2°+5Bz—-7-15)|<e¢
which is equivalent to
0<|z—2/<d = |[(B2®+5z-22)|<e

Based on our previous work with limits, we might guess that the quadratic expression can be
factored, that (r — 2) is a factor, and that factoring the quadratic expression may be helpful.
This is indeed correct:

O0<|z—-2/<d = J(z—-2)Bx—-2)+17]|<e

Remember, the game is that we are presented with a positive value of €, and then we have to
figure out how to restrict the values of x, if possible (i.e., choose a value of ), so that the limit
condition on the previous line is satisfied. In other words, we have to figure out how to restrict
the values of x so that the quadratic expression is not too large — specifically it must remain
less than €. The |z — 2| factor is under control — we know it is less than § — so we only have to
worry about getting the other factor, |3(z —2) 4+ 17| — under control. We can do this, as we did
in the previous example, by restricting the values of x to be near 2; for instance, we can say that
1 < x < 3. Remember that this is allowed, for if we ever find a value of § that works, using a
smaller value also works. With this restriction, it follows that | — 2| < 1, from which it follows
that |3(z — 2) 4+ 17| < 20. If this is unclear, just plot the graph of y = 3(z — 2) + 17, which is a
linear function, note that the function values are all positive in the interval |z — 2| < 1, and then
observe what the maximum value of this linear function is over this interval.

It follows that for all values of x that satisfy both |x —2| <1 and 0 < |z — 2| < 4,
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|(z —2)[3(z —2) + 17]| < 6(20)
Comparing this line with the limit condition, it seems that a reasonable choice for § in terms of
€ is
€

6:270

The last step is to prove that this choice satisfies the limit condition for each value of € > 0:

Given € > 0, and restricting z-values to lie within the interval |z — 2| < 1, choose § = £/20.
Then,

3

—2|<d -2
0<|z—2|< = |z |<20

which is equivalent to
O0<|z—-2/<d = 20x—2|<c¢

It follows that, for the interval of z-values that we are considering,
O0<|z—2/<é = [(z—-2)Bz—-2)+17]|<e

because we have replaced 20 by a quantity that is certainly less than 20 on the interval of interest.
This completes the proof. To summarize, we have shown that given an € > 0, there exists a
d > 0 such that for |z — 2| < 1,

O0<|z—2/<d = |f(x)—15]<e
We can therefore conclude that

m (32° + 5z —17) =15

li
r—2

There is nothing in the previous example that is incorrect, but there is one point that is worthy
of further discussion. We stated that

lr—2<1 = 3(z—2)+17<20

which is correct, and can be understood by thinking about the graph of y = 3(x — 2) + 17, as we
argued in the example. However, it is frequently useful to apply the triangle inequality in such
situations. According to the triangle inequality,

13(z —2) + 17| < |3(z — 2)| + [17]

On the interval of interest, |z — 2| < 1, it is certainly true that |3(z — 2)| < 3, so it follows that
|3(x — 2)| + |17| < 20. Thus, we can conclude that

13(z — 2) + 17| < 20

This argument, based on the triangle inequality, is the more commonly used one.

For a reminder about the triangle inequality, read the following feature box.
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CAREFUL!
The triangle inequality: |a + b| < |a| + ||

Reasoning with inequalities is notoriously tricky. For example, if we know that |a 4 b| < 5, does
it therefore follow that |a| + |b| < 57 Play with this yourself by substituting some values in for
a and b.

The answer to the question in the previous paragraph is “No.” A counter-example is a = 6 and
b = —4; in this case, |6 — 4] is indeed less than 5, but |6] 4+ | — 4| is not less than 5. In general, it
is possible that |a 4 b| is smaller than |a|+ [b| (this is known as the triangle inequality), so if the
potentially smaller quantity is less than a certain value, it does not follow that the potentially
larger value is less than that same certain value. Arguing the other way, however, is valid: If
the potentially larger value is smaller than some certain value, then it is definitely true that the
potentially smaller value is also less than that same certain value. This reasoning was used in
the passage following the previous example.

After having played with the triangle inequality sufficiently, you can prove it as follows. First
note that the fact —|s| < r <|s| is equivalent to the fact |r| < |s|. (Illustrate this for yourself on
a diagram of the real line!) Now consider the inequalities

—la|<a<la] and —|b] <b<|b)
and add the inequalities term-by-term to obtain
—(la[ +[b]) < a+b < |a] + 0]

As you illustrated above, this is equivalent to the triangle inequality, |a + b| < |a| + |b].

The triangle inequality gets its name from a version of it involving vectors, where the double
absolute-value bars mean the length of the enclosed vector:

|la+ bl < [al| + ||b]]

You can understand this version of the triangle inequality intuitively by noting that the three
vectors a, b, and a + b form the sides of a triangle (sketch this!). This form of the triangle
inequality states that the sum of the lengths of two sides of a triangle is greater than the length
of the other side. This is true no matter which two sides are chosen. Another way of intuitively
understanding this version of the triangle inequality is to remember the phrase “the shortest
distance between two points is a straight line.”

If you know a bit about vectors and dot product, you will be able to follow this terse proof of
the vector version of the triangle inequality:

lla+b|> = (a+b)-(a+b)

la+b|> = a-a+2-b+b-b

la+bl[> = |lal|*+2|la]|[[b]| cos 8 + ||b]|?

la+bl[> < |lal|*+2|[a]|[[b]| + |[bl][*>  (because cosd < 1)
la+bl*> < (lla]| + [[b]))?

lla+b|[ < |[lall+ [[b]]
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It may be worth reminding you at this point why we are bothering with these complicated
arguments to justify limits that may be obvious to you. The reason for this is that you should
always practice new tools in situations that you already understand, as this will help you absorb
the new methods. Once you understand how to use new tools in relatively simple situations, this
will give you confidence to use them in situations that are more involved, especially in situations
where your old understanding (before having the new tool) is insufficient.

EXAMPLE 29
Using the precise definition of limit to prove the limit of a rational function

Evaluate the limit and then use the precise definition of limit to prove your guess correct.
3
lim ()
z—0.5 \ &

SOLUTION

The first step is to guess the limit. Rational functions are continuous for all real values of x at
which they are defined, so we can determine the limit by substitution. Thus, we know that the
limit is

. (3) 3
lim (—-) = —
=05 \ T 0.5

lim <3> = 6
z—0.5 \ T

Next we will use the precise definition of limit to prove that 6 is indeed the limit. To do this, we
must first figure out how to choose § for a given . That is, we must show that for each given
g€ > 0, there is a § > 0 such that

3
0<|z—05/<6d = ’x_6‘<€

Observe that

3 3 3
Z_ = T __—

T z 0.5

3 1 1
Z_6 = 32— —
x (a: 0.5>
3 05—=x
;_6 B 3( 0.5z )
§—6 _ 6(0.5—3:)
T x
§—6 _ _6<x—0.5>
x x

Thus, the limit condition is equivalent to the condition
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0<|z—-05/<0 =

(z — 0.5) (;6)' <e

0<|z—05<d —> (x—o.5)|’§'<s

which is equivalent to

The first factor at the far right is under control, so the task is to ensure that the second factor is
also under control. We can do this by restricting the values of x under consideration to a suitably
small interval centred at z = 0.5, say 0.4 < x < 0.6, we can ensure that the maximum value of
6/x is 6/0.4 = 15. Thus, provided that both conditions 0.4 < z < 0.6 and 0 < |z — 0.5| < ¢ are
satisfied, it follows that

6
—0.5)]|—| < 150
|(x —0.5)] 'a:’ <15
It seems that choosing 156 = ¢, that is choosing § = ¢/15, will therefore work. This can be
verified as follows:

Given ¢ > 0, choose 6 = £/15. Then, restricting the values of x under consideration to 0.4 <
x < 0.6, it follows that

0<|z—05 <=

0<|z—-05<d =
6
0<|z—-05/<d0 = 0<]m—0.5]“<5
X
6x — 3
0<|z—05 <0 = 0<|Z ’<5
€T
3
0<|z—-05 <9 = 0<|6——|<e¢
€T
3
0<|z—05]<d = 0<|--6|<e
X

Thus, given £ > 0 there exists a 0 > 0, specifically § = /15, such that (if we restrict the values
of z to 0.4 < x < 0.6)

3
0<|z—05/<d = ’—6‘<5
T

We can conclude that indeed

Sketching a graph and tracing the steps of the proof on the graph will help you understand it.

We have so far illustrated the precise definition of the limit for a few polynomial functions,
one rational function, a discontinuous function, and a couple of more exotic functions. The same
definition can be used on any function whatsoever, but it would take hundreds of pages to illustrate
using the formal definition of a limit on all types of functions. We’ll be content with just one more
example, which follows.
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EXAMPLE 30
Using the precise definition of limit to prove the limit of a radical function

Evaluate the limit and then use the precise definition of limit to prove your guess correct.

lim (\/E)

r—4

SOLUTION

The first step is to guess the limit. This function is continuous at x = 4, so we can determine
the limit by substitution. Thus, we know that the limit is

lig (V) = VA
lim (vz) = 2

r—4

Next we will use the precise definition of limit to prove that 2 is indeed the limit. To do this, we
must first figure out how to choose § for a given €. That is, we must show that for each given
€ > 0, there is a § > 0 such that

O<|z—4]<d = |Vo-2|<e

Observe that
Vi-2 = (Va-z2). YIT?

r—4
-2 =
Ve V42

o)

Throughout the domain of the function (that is, > 0), the value of the second factor on the
right of the previous equation is no more than 1/2. The first factor is less than . Thus, a good
choice of ¢ appears to be to set /2 = &, which means to choose § = 2¢.

To prove that this choice works, note that

Va-2| = fo-al]

Ve -2 < §-
Ve —2| < e

1
VI +2 ‘
1
2
Thus, we have shown that for each given £ > 0, there exists a positive value of §, namely é = 2¢,
such that
O<|z—4]<d = |Vo-2|<e
By the definition of limit, this proves that

lim (vz) =2

r—4
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The examples in this section will serve to give you the flavour of the arguments necessary
to prove that a conjectured limit is indeed correct, using the formal definition of a limit. The
following exercises will give you an opportunity to further practice these arguments, after you have
had sufficient practice in reproducing the arguments of the previous examples without peeking at
them. (It may take a few iterations before you can successfully repeat the arguments on your own;
be patient and persistent.)

Before you tackle the exercises, it is worthwhile devoting a bit of time to exploring what happens
when you try to use the formal definition of a limit to prove a limit that is actually incorrect. It’s

good to see how this goes wrong, so that you will be able to better spot your own errors should
you make any in this context. For example, consider the function

fx)=3x+5

and consider the limit

lim f(x)

r—2

Because f is continuous, we know that the indicated limit is 3(2) + 5 = 11. But suppose that we
make a calculation error, and that we mistakenly think that the indicated limit is actually 9. Let’s
try to prove this mistaken limit using the formal definition of limit and see what happens.

By the definition of limit, we would have to prove that for each given varepsilon > 0, there
exists a positive value of § such that

O0<|z—-2/<d = |Bxr+5)—-9 <e

which is equivalent to

O0<lr—2/<d = [Bz—4|<e

which is equivalent to

O0<|z—2/<d = [Bxz—2)+2|<c¢

But this is not possible. The first term on the right, 3(x — 2), is under control (it is no greater
than 30), but there is nothing we can do about the second term, which is resolutely equal to 2.
Therefore, if we are presented with a value of ¢ that is small enough (say, ¢ = 0.1), there is no way
that we can ensure that |3(z — 2) + 2| < & by choosing a small enough value of 4.

Note that you can’t get around this by just cherry-picking a single value of = for a given ¢; the
condition has to be satisfied for all z-values in the interval defined by 0 < |z — 2| < 0. To see that
this can’t be done, it would be helpful to sketch a diagram.
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EXERCISES

(Answers at end.)

Guess each limit. Then use the precise definition of limit to prove that your guess is correct.
Illustrate your work by sketching a graph in each case.

1. lim (2* —3) 2. lim (2°)
x—2 r—2
3. lim (x2 —z+ 1) 4. lim (m2 + 22 + 1)
x—3 r——3
. 4 .
. () 6 Jm(ve)

Answers: 1. limit is 1; restrict « to |z — 2| < 1 and then choose § = £/5 for the proof, but other choices also work
2. limit is 8; restrict @ to | — 2| < 1 and then choose § = £/19 for the proof, but other choices also work
. limit is 7; restrict = to |z — 3] < 1 and then choose § = £/6 for the proof, but other choices also work

3

4. limit is 4; restrict = to |z 4+ 3| < 1 and then choose § = /5 for the proof, but other choices also work
5. limit is 4/3; restrict  to | — 3| < 1 and then choose § = £/2 for the proof, but other choices also work
6

. limit is 3; restrict = to |x — 9] < 5 and then choose § = 5¢ for the proof, but other choices also work

Let’s discuss a few final thoughts on the formal definition of a limit before moving on. Why
isn’t the definition the other way around? That is, why doesn’t the definition say that given any
positive value of §, there exists a positive value of € such that the limit condition is valid. After all,
our informal concept of limit is that lim,_,, f(x) = L means that when x is close to a, it follows
that f(z) is close to L. Why doesn’t the formal definition parallel this phrase?

The reason for this is that such a formulation actually doesn’t achieve what we wish. Consider
this attempt at a definition of limit: We say that
lim f(z) =L

Tr—a

provided that for each § > 0, there exists a value of € > 0 such that
O<lr—al<d = |f(z)—Ll<e

This doesn’t work! For example, consider a function that has a jump discontinuity at x = a.
(Sketch a graph!) For each positive value of ¢, it is indeed possible to choose a positive value of &
such that the limit condition in the previous equation is satisfied. Just choose the value of ¢ to be
large enough.

By this new definition, the discontinuous function would have to be judged continuous, because
it satisfies the condition! I hope this discussion makes clear that the proposed new definition of a
limit doesn’t work.

One way to think about this: We wish the formal definition of a limit to reflect our intuitive
conception of limit, that as  — a, f(z) — L. If this were not true, how could you show it? Well,
one way would be to demonstrate that there is some kind of “red zone” along the y-axis, centred
on y = L, such that even as © — a, there are some values of f(z) that stay out of the red zone. In
other words, that there exists a positive value of € such that it is not true that

O<|z—a|<d = |f(x)—L|<e

Does this make sense? If so, then maybe this gives you another perspective on why the actual
formal definition of a limit is the way it is. The formal definition says that if the limit really is L,
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then there is no such red zone; for each positive value of ¢, all values of x that are sufficiently close
to a (i.e., within a distance §) have corresponding function values that are close to L (i.e., within
a distance €).

SUMMARY

In this section the formal definition of a limit was presented. Discussion of the concept of a limit,
including its connection with our earlier, informal concept of limit, was followed by a number of
examples, worked out in detail.
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Chapter 11

Theory, Part 2

OVERVIEW

After introducing the formal definition of a limit in the previous section, we adapt the definition
in this section to various other limit situations. Then we state and prove the limit laws and a
few other important theorems.

157
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11.1 Limits “at Infinity”

DEFINITION 9

Precise definition of limit “at infinity”

The limit

lim f(x)

T—00

exists and is equal to L — that is,

lim f(z)=1L

T—00

provided that for each positive value of € there exists a value of M such that for all x > M,
|f(z) - Ll <e
Similarly, the limit

lim f(z)

T—r—00
exists and is equal to L — that is,

lim f(x)=1L

T—r—00

provided that for each positive value of e there exists a value of M such that for all x < M,

[f(z) - Ll <e
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EXAMPLE 31
Using the precise definition of limit to prove a limit “at infinity”

Evaluate the limit and then use the precise definition of limit to prove your guess correct.
. < = )
lim
z——oco \ 1+ x2

SOLUTION

Based on our informal understanding of limits, the limit of the function is 2, because as © — —o0

222
2 —_—
12952: 1«’132 5 = 12 —2
+x 1 =z 724_1
x2 T

2

To prove that this value is correct, for each £ > 0, we must show that there exists a value of M
such that for all x < M, the limit condition

' 222

1+x2_2‘<8

is satisfied. It will be helpful to “solve” this inequality for z, because the relation between M
and € that we seek involves a condition on x. Thus:

2
Q‘ng—l <e€
z? 1+ 22
'1—{-3@2 1422
22 — (1+12)
1+ a2
1
o
1
1+ 22 <
2 <e(l+2?
2 < e+ ea?
2

<

| ™

| ™

| DN M

2—e<ex

2—¢
x2>

9

Note that the function values all lie between the values 0 and 2. Thus, for ¢ > 2, the limit
condition will be satisfied for all real values of M. For ¢ < 2, the limit condition is satisfied
provided that

2—¢
€

T < —
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Therefore, given € > 2, an arbitrary real value of M will work. For a given € < 2, choose

2—¢
€

M=—

This completes the proof.

It would be wise for you to sketch a graph of the function from the previous example, select
a few representative values of ¢, calculate the corresponding values of M, and then illustrate the
matching pairs of values on the graph. This will provide evidence for the validity of the relationship
between M and e.

11.2 One-Sided Limits

The formal definition of limit can also be adapted to the situation of one-sided limits.

DEFINITION 10
Precise definition of one-sided limit

The limit

lim f(x)

z—at

exists and is equal to L — that is,

lim f(z) =1L

z—at

provided that for each positive value of € there exists a value of § such that for all x that satisfy
a<z<a+d,

[f(z) = LI <e
Similarly, the limit

lim f(z)

r—a—

exists and is equal to L — that is,

lim f(z)=1L

Tr—a~

provided that for each positive value of ¢ there exists a value of § such that for all x that satisfy
a—90<zx<a,

[f(z) =Ll <e
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EXAMPLE 32
Using the precise definition of limit to prove a one-sided limit

Evaluate the limit and then use the precise definition of limit to prove your guess correct.

SOLUTION
2]

For z > 0, |x| = x, so — = 1, so it’s reasonable to guess that the limit is 1. Because the function

values are constant for x > 1, it follows that the limit condition

=l

1‘ <e€

x

is satisfied for each positive value of € for all positive values of x. Thus, given € > 0, one can
choose a positive value of § arbitrarily and the limit condition will be satisfied. This completes
the proof. Sketch the graph to verify that § can be chosen arbitrarily!
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11.3 “Infinite” Limits

DEFINITION 11
Precise definition of “infinite” limit

The limit statement

lim f(z) =00

r—a™t

means that this limit does not exist because the function values increase without bound as
x — a’. Formally,

lim f(z) =00
z—at

provided that for each value of M there exists a positive value of ¢ such that for all z satisfying
a<z<a+d,

flz) >M
Similarly,

lim f(z)=—o0

z—a™t

provided that for each value of M there exists a positive value of § such that for all x satisfying
a<z<a+d,

flx) <M

Similar definitions apply for left-hand limits.

It will be a good test of your understanding for you to write explicit definitions for infinite
left-hand limits.
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EXAMPLE 33
Using the precise definition of limit to prove an “infinite” limit

Evaluate the limit and then use the precise definition of limit to prove your guess correct.

. 1
lim
z—=3— T — 3

SOLUTION

Sketching a graph of the function will make the rest of this paragraph easier to understand. As
x — 37, the denominator of the formula for the function — 0, and the numerator is constant,
which means that the function either — oo or — —oo. Noting that the denominator is negative
for x < 3, it follows that

. 1
lim
r—3— T —

= -
To prove this using the precise definition of limit, we must show that for each value of M there
exists a positive value of § such that for all x satisfying 3 — 9 < = < 3,

1
T —3

<M

Subtract 3 from each term of the inequality 3 — § < z < 3 to obtain
—-0<z—-3<0

from which it follows that

1 1

a:—3< 1

This means that we can guarantee that the limit condition

1

<M
r—3

is satisfied by choosing

1
<M
(5<

which is equivalent to

1
§< ——
STNM

1
Thus, given M, choose § < U which ensures that for all z satisfying 3 —d <z < 3,

1

M
x—3<

This completes the proof.
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It would be wise for you to sketch a graph of the function from the previous example, select
a few representative values of M, calculate the corresponding values of §, and then illustrate the
matching pairs of values on the graph. This will provide evidence for the validity of the relationship
between § and M.

There are other kinds of limit statements that we can make, but the ones we have treated so
far cover the most common situations, and will give you the flavour of how the formal definition of
limit works in these common situations.

Next, let’s recall the limit laws, stated earlier in the chapter, and provide proofs of each one,
based on the formal definition of limit. Again, analogous laws hold for the other types of limits,
and these other limit laws can be proved in similar ways, once you have absorbed the flavour of the
following proofs.

11.4 Limit Laws

In this section we state the limit laws used earlier in the chapter and then we prove them based on
the precise definition of a limit.

THEOREM 6

Limit Laws

Suppose that the function f is an algebraic combination of simpler functions. Also suppose that
the limit of each of the simpler functions exists. Then to evaluate the limit of f, just evaluate the
limit of each of the simpler functions, and combine the individual limits using the same algebraic
combination that forms f.

To be more specific, here are some fundamental instances of this idea. We also assume that & is
a constant, and that lim,_,, f(z) and lim,_,, g(x) both exist.

a) lim k- f(z)] =k [hm f(x)}

r—a r—ra

b) Jim [£(z) + g(a)] = lim f(x) + lim g(c)

T—ra (
(

(
(
() lim [f(z) - g(2)] = lim f(z) — lim g(z)
(

d) lim [f(@) - g(z)] = [lim f(a)] - |lim g(a)]
:L‘):| . lim, g f(a:;

B limg ., g(aj

, provided that lim g(z) # 0

T—a

PROOF (a): Let

L = lim f(x)

T—a

This means that given & > 0, there exists 0 > 0 such that for all z that satisfy 0 < | — a| < 4,

£
the limit condition |f(x) — L| < z is also satisfied. The limit condition is equivalent to
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klf(xr)— Ll <e
which is equivalent to
|kf(x) — kL| <e
which is equivalent to the statement that

lim & - f(z) = kL

T—ra

which is equivalent to the statement that

fi el == B - )
This completes the proof of Part (a) of the theorem.
PROOF (b): Let

L, = lim f(z) and Ly = li_r)n g(x)

r—a

This means that given € > 0, there exists 4; > 0 and d3 > 0 such that for all x that satisfy
0 < |z —a|] < 41, the limit condition |f(x) — L1]| < % is satisfied, and for all = that satisfy

0 < |z —a] < d2, the limit condition |g(z) — La| < % is satisfied. For this given value of ¢, choose
d to be less than the minimum value of d; and d5. Then, for all x that satisfy 0 < |z — a| < 4,
both of the limit conditions

€
2

€

f@) = L] < .

and lg(x) — La| <
are satisfied. Therefore, for the same values of z,

[f(x) = La| + [g(z) — Lo| <e

Recall the triangle inequality: |m + n| < |m| + |n|. It follows that for all x that satisfy 0 <
|z —a| <4,

|f(#) = L1+ g(z) — Lo <¢
which is equivalent to
lf(z) +9(z)] = [L1 + Lo]| < e

This completes the proof of Part (b) of the theorem.

PROOF (c):
lim [£(2) — g(2)] = lim [£(z) + (~g(2))]
lim [£(2) — g(2)] = lim f(2) + lim [~g(z)]  (by Paxt (b))

lim [f(z) — g(z)] = lim f(z) — lim g(x) (by Part (a), with k = —1)

Tr—a Tr—a T—ra
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PROOF (d): Let

L, = lim f(z) and Ly = lim g(x)

r—a T—ra

This means that given ¢ > 0, there exists 4; > 0 and d3 > 0 such that for all x that satisfy

0 < |z —a| < 61, the limit condition |f(x) — Li| < _f satisfied, and for all = that
2(1+ |L2{|_:)
satisfy 0 < |z — a| < d9, the limit condition |g(x) — Ls| < ————— is satisfied.

Additionally, a third limit condition is that given € > 0, there exists d3 > 0 such that for all x
that satisfy 0 < |z — a| < 03, |g(x) — La| < 1 is satisfied. Using the triangle inequality, it follows
that for all = that satisfy 0 < |z — a| < 43,

lg(z)| = |g(z) — L2 + La| < |g(x) — La| + | Lo
and therefore, for the same values of =z,
lg(z)| <1+ |Lof

Now we can complete the proof. For the given value of €, choose d to be less than the minimum
value of 41, 2, and d3. Then, for all z that satisfy 0 < |x — a| < J, all three limit conditions

€ e
’f(l‘) — L1| < m and |g(ZL‘) - L2| < m and ’g(l’) — L2| <1

are satisfied. Therefore, for the same values of z,

|f(z)g(x) — L1La| = | f(2)g(x) — L1g(z) + L1g(x) — L1Lo
|f(z)g(x) — L1La| < |f(x)g(z) — L1g(z)| + |L1g(z) — L1Ls|
|f(z)g(x) — L1La| < |g(z)||f(x) — L1| + |L1| |g(x) — La|
(z)

F(@)g(a) — LiLa| < 1 +wﬂ[

X

x

e
) e
F@)g(e) = Ll < 5 + 2
|f(x)g(x) - L1L2| <e

Passing from the third-to-last line to the second-to-last line is justified by the observation that

|L1]

<1
1+’L1|

This completes the proof of Part (d) of the theorem.
PROOF (e):
We first prove the special case for which f(xz) = 1. That is, we first prove that

i [ 1 ] 1
im = —
w2 | g(@)] ~ Timga g(a)

provided that lim,_,, g(x) # 0. Let L = lim,_,, g(x); thus, there exists 6; > 0 such that
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for all = that satisfy 0 < |z — a| < 41,

L
jo(@) — L] < 2!

For the same values of x,

L] = |L = g(z) + g()]
L] < |L = g(2)| + |g9()]
L]

Ll < —
<
L

2 <o)

1 2
<

l9(@)] " ILI

+ lg(=)]
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Furthermore, because lim,_,, g(z) = L, given ¢ > 0, there exists do > 0 such that for all x that

satisfy 0 < |z — a| < da,

elL|?
2

lg(z) — L] <

Now choose 0 as the minimum of §; and d3. Then for = that satisfy 0 < |z — a| < 4,

11 _‘L—g(x)
g(x) L Lg(z)

1 1 1 1 | ( )
== g(z) -
glz) L| |L]|g(x)]

11| _ 1 2cLp
g(z) L| " |L||L] 2
g(x) L

Thus,
P
oo | g(@)] L

which is equivalent to

[ 1] 1
lim = —
e—a | g(z)|  limg_q g(2)

To complete the proof, note that

z—a _g(x)
@] T,
i [77] =1

lim f(m)] _ Jim [ @) - 1]
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12 5] = 0] [
(x)] _ limg g f(2)
(z)

lim = —
r—a | g(x limg—q g(a:)

-

Some discussion of the proofs of Parts (d) and (e) of the previous theorem are warranted. They
seemed very much like “rabbit-out-of-the-hat” tricks, which are very unsatisfying. Let’s try to
simulate the thinking that may have gone into the creation of such a proof.

In the case of the product rule for limits (Part (d) of the previous theorem), we know that the
limits of f and g exist, and we are trying to prove that the limit of fg exists. Thus, for a given ¢ > 0,
we must figure out how to choose ¢ such that 0 < |z — a| < § implies that |f(z)g(x) — L1La| < €.
Knowing that the limits of f and ¢ exist, we already have conditions available on L; and Lo
separately, so we have to somehow manipulate the inequality |f(z)g(x) — L1La| < € so that we can
separate it into bits involving just f and bits involving just g. Pay close attention to the trick of
adding and subtracting an identical term, because a very similar trick will recur in the proof of the
product rule for derivatives in the following chapter:

|f(x)g(x) — L1La| = |f(2)g(z) — L1g(x) + Lig(w) — L1Ls|

We can now apply the triangle inequality to the right side of the previous line to obtain

|f(x)g(x) — L1La| < [f(x)g(z) — L1g(@)| + |L1g(z) — L1 La|

If we can make the right side of the previous line less than ¢, this will guarantee that the right side
of the line before that will also be less than €. Continuing,

[f(@)g(x) — Lig()| + |Lrg(w) — LaLa| = [g(x)[ - [f(2) — La| + [La] - |g(x) — Lo

We wish to ensure that the right side of the previous line is less than €. Well, there are two terms;
why don’t we strive to ensure that each term is less than /2, so that the sum is guaranteed to be
less than €7 OK, good. The second term is not too bad, because the first factor is constant and
the second factor is “under control” — after all, the limit of g is Ly, so we know that we can ensure
that this factor is small. The first factor is a little more complicated, because of the factor of |g(x)|;
we know, however, that it is close to Lo when x is near a. We’ll have to make this specific, though;
“close” is way too vague for a proof. So we are encouraged to dig in there and see what we can
do with this factor. Once we have bounded it, then we can work on the second factor of the first
term, and then we can put it all together to construct a logically sound proof.

One might be tempted to say that the rest is details, but these details are vital! As you work
your way through the details to understand the inner workings of the proof, remind yourself that
the details in such proofs are not rigid; the choices made for the expressions for the various deltas
has some wiggle room in them, and so other choices will also work. You might play with this to
see how far you can push these choices.

We can state analogous laws for limits at infinity, one-sided limits, etc. For the right kind of
person it will be a satisfying challenge to state and prove such laws.

11.5 The Squeeze Theorem

The squeeze theorem is a tool that is helpful for determining certain limits more easily than by
using the definition of limit. Some examples follow after the statement of the theorem and its proof.
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THEOREM 7

Squeeze theorem: Suppose that g(z) < f(x) < h(z) and that
il_r}r}lg(x) =L and }qllg h(z) =L

Then
lim f(z) =L

r—a

Proof: Consider a given value of € > 0. Because lim,_,, g(x) = L, there exists a ; > 0 such that
for all = that satisfy 0 < |z — a| < 01,

lg(z) — L] <&

This condition is equivalent to
—e<glx)—L<e

which is equivalent to (add L to each term of the previous inequality)
L-e<g(x)<L+e

Using the same line of reasoning, you can show that there exists a do > 0 such that for all x that
satisfy 0 < |z — a| < d2,

L—e<h(z)<L+e

Choose 0 to be the minimum of §; and d2. Thus, for all = that satisfy 0 < |x — a| < §, both of
the following relations are satisfied:

L—¢e<g(x) and h(z) < L+¢

Because g(z) < f(z) < h(z), it follows that for the same values of z,
L—¢e< f(x) and flz)<L+e

which is equivalent to
f@)— Ll <=

and this completes the proof.

Can you sketch a graph and label it to make the proof of this theorem more intuitive?

Question: Could the domain over which the inequality in the squeeze theorem is satisfied be
restricted and the theorem still remain valid? Play with this idea.

The following examples illustrate the utility of the squeeze theorem.
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EXAMPLE 34
Using the squeeze theorem to determine a limit

Determine the limit.
1

lim 2 sin ()
x—0 xX

SOLUTION

Because
-1 <sinf <1

it follows that

1
—1 <sin <> <1
T

Multiplying each term of the previous inequality by 2, we obtain
2 2. (1 2
—x - <zsin|— ) <«x
x
Noting that
lim (—xQ) =0 and lim (x2) =0
z—0 z—0

we can apply the squeeze theorem to conclude that

1
lim 22 sin () =0
x—0 X

Examining a graph of the function will be helpful; see Figure [11.1] and you may wish to plot it
yourself using your favourite software so that you can explore it in detail, zooming in and out. It’s
interesting to note that the function is not defined at x = 0, which means that the function has
a hole discontinuity there. It’s also interesting to note the asymptotic behaviour of the function,
which is more apparent if you “zoom out” on the graph; see Figure It appears that the graph
is asymptotic to y = x. Is it clear that the sine factor approaches zero as * — oo? The quadratic
factor grows without bound as x — oo, so it’s interesting that the two growth rates are just right
so that the product of the two factors grows approximately like y = z as £ — oo. Once you have
a few more tools under in your tool-box (to be discussed later in this book) you will be able to
convince yourself that y = x really is an asymptote for this graph.

To understand the asymptotic behaviour of the graph as x — —o0, it’s simplest to observe that
sine is an odd function, and the quadratic factor is even, so overall the function in the graph is
odd. Is this enough to convince you that y = x is also an asymptote when  — —o0?
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[43

Figure 11.1: This strange function “wiggles” an infinite number of times near x = 0. The limit of

this function as  — 0 is zero.

A

Figure 11.2: The asymptotic behaviour of this function is more apparent in this graph than in the
previous one. A formula for the dashed line is y = z.

DIGGING DEEPER

2sin (1)

You might use an electronic calculator to explore the following fact: For small angles, sin 6 is
approximately equal to 6, provided that you measure the angle in radians. We develop this
relationship in the following chapter. (What is the approximate relationship if you measure the
angle in degrees?) Furthermore, the smaller the angle, the better the approximation.

Asymptotic behaviour of f(z) ==z
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As x — 00, 1/ — 0, so for large values of z,

) (1) 1
sin| — ) ~ =
i i

and therefore

1 1
2% sin <> ~ s
x T
1
2% sin () ~ T
x

This provides further evidence that y = z is indeed an asymptote for the graph of f(z) =
2

x* sin (%)
A second line of argument will be apparent once we discuss power series, much later in this book.
Then we will be able to make the small-angle approximation sin x &~ x more precise:
. L 3 1 s
smzxww—gfv —|—an: =rcoo
You might like to explore this relation with your favourite graphing software; I wonder if you

will be able to guess the next few terms of the series. This will be fun!

A third line of argument will be convincing once we have developed (in the next chapter) the
interesting fact that

sin

lim =1

z—0 T

Another way to write this fact is

1
lim < 'sin:c> =1
x—0 \ T

Replacing 1/z by y, and observing that as z — 0, y — 0o, we can write this fact in an equivalent
form as

. . (1
lim ysin <> =1
Y—00 y

But what’s in a name? A rose by any other name would smell as sweet, said Mr. Shakespeare,
and it’s the same story here. We could relabel y in the previous equation by any other letter and
it would still be valid. Relabeling y by x in the previous equation, we obtain

1
lim zsin () =1
T—00 €T

Multiplying both sides of the previous relation by z, it is then quite plausible that as z — oo,

: 1
?sin | =)~z
a8

I wonder if it is possible to make this plausibility argument rigorously valid?



11.5. THE SQUEEZE THEOREM 173

EXAMPLE 35
Using the squeeze theorem to determine a limit

Determine the limit.
1
lim 2 sin <2>
x—0 xX

SOLUTION

Because
-1 <sinf <1

it follows that

Noting that

lim (—xQ) =0 and lim (x2) =0

z—0 z—0

we can apply the squeeze theorem to conclude that

A graph of the function will be helpful; see Figure and Figure It will also be worthwhile
for you to plot a graph of this function using your favourite software, so that you can explore the
graph more fully.

The two previous examples illustrated functions with similar behaviour near x = 0, but the

asymptotic behaviour of the two functions is different, and worth exploring. The function f(z) =
1

x2 sin <$2> appears to have a horizontal asymptote at y = 1, based on the graph. Using reasoning

similar to the reasoning in the previous “Digging Deeper” feature box, does this seem reasonable?

You might like to generalize the previous two examples in various ways; for example, try different

powers of z, either in the argument of the sine function, or in the other factor. Exploring in this
way will lead you to a much deeper understanding.

You might also think about how you would otherwise prove the limits in the two previous
examples; this might lead you to appreciate the advantage of having a tool like the squeeze theorem.

Can you think of some other examples of limits that are amenable to tackling by the squeeze
theorem?
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Figure 11.3: This strange function
this function as z — 0 is zero.

CHAPTER 11.

THEORY, PART 2

wiggles” an infinite number of times near x = 0. The limit of

A

Y
8

Figure 11.4: The asymptotic behaviour of this function is more apparent in this graph than in the
previous one. It appears that there is a horizontal asymptote at y = 1.

11.6 Proofs of Some Theorems

In this section we provide formal proofs of some of the theorems that were quoted earlier in the

chapter. We also state and prove some other useful theorems.
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11.6.1 Differentiable Functions are Continuous

We discussed earlier in the chapter the fact that just because a function is continuous at a point
does not mean that it is differentiable at that point; for example, the graph of the function might
have a corner or cusp at that point. For example, recall the absolute value function, illustrated in
Figure The derivative of the function at « = 0 is defined to be

£1(0)  1im L) =10

h—0 h—0

provided that this limit exists. We can evaluate the limit by examining the left and right limits
separately. For the right limit,

g T = FO) () —0
h—0+ h—0 h—ot h—0
. f(h)—=fO0) . A
hlgng h—0 hlg})lJr h
. f(h)—fO) . h
hli%{r h—20 hlgfrﬁr h
im LSO
h—0+ h—0 h—0+
. f(h) = f(0) _
hlinol+ h—0 L
For the left limit,
. f(h)=fO) . f(h)—0
hlg(lg{ h—0 hlg(g{ h—0
. f(h)=fO) _ . |h]
hlg(gg h—0 hlg(lg{ h
lim (h) — £(0) = lim _—h
h—0— h—20 h—0—
h) — (0
oy G =
o S —F0)
h—0— h—0
y f(z) = |z|
3
2
1
< X
-3 -2 -1 I 1 2 3

Figure 11.5: The function f(x) = |z| is continuous at all values of z, but is not differentiable at
x = 0, as explained in the text. Geometrically, the corner in the graph at the origin indicates that
the function is not differentiable at = = 0.
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Because the left and right limits are not equal, it follows that the derivative of the function at
x = 0 does not exist, and so the function is not differentiable at x = 0. You can see from Figure[l11.5
that the right limit and left limit that we just calculated represent the slopes of the two branches
of the graph of the function. Because the two slopes are different, the two branches of the graph
do not join smoothly at x = 0, and this sharp corner is a tell-tale sign that the function is not
differentiable at x = 0.

To conclude this part of the discussion, just because a function is continuous at a point does not
guarantee that the function is differentiable at that point. However, the converse is true; that is, if
a function is differentiable at a point, then it is certainly continuous at that point. The following
theorem summarizes this fact.

THEOREM 8
Suppose that the function f is differentiable at © = a. Then f is continuous at = = a.

Proof: Consider the definition of the derivative of f at z = a:

x)— f(a
f@) = 1 £@) =@
T—a T —a
Roughly speaking, asserting that f is differentiable at © = a is equivalent to saying the limit on
the right side of the previous equation exists. But the denominator approaches zero as r — a;

how can the limit exist? The only way for this to happen is that the numerator must also
approach zero as x — a; but this is what we mean by the function f being continuous at x = a.

So our strategy is to somehow isolate the numerator so that we can manipulate it into the con-
dition for a function to be continuous. This involves separating the numerator and denominator,
as follows:

_ limg s (f(2) = f(a))

lim, 4 (x — a)

f'(a)

Expressing the limit of a quotient as the limit of the numerator divided by the limit of the
denominator is justified by one of the limit laws. Oops; no it’s not in this case. That limit law
specifies that this move is valid if the limit of the denominator is not zero, and in this case the
limit of the denominator is zero, so this argument is invalid.

OK, division failed, so let’s try multiplication as a way of isolating the numerator. That is, let’s
multiply both sides of the equation by lim,_,,(z — a):

ey = 1y LD =10
b - ) 10 = (i P oy o

Now the two limits on the right side of the previous equation both exist, so we can use the
product rule for limits to express the right side as:

lmwx—@f%w=“m[ﬂ@jw”

r—a r—a Tr—a

(z— a)]
lim (2 — a) f'(a) = lim [f(2) — f(a)

Tr—a
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Now observe that the limit on the left side of the previous equation is zero. Therefore,

0 = lim [f(x) — f(a)]

r—a

Using a limit law on the right side of the previous equation, and then rearranging the result, we
obtain

0= lim f(z) — lim f(a)

lim f(z) = lim f(a)
lim f(z) = f(a)

The previous equation follows because f(a) is a number (a constant function, if you prefer), and
the limit of a number is itself. Because the previous equation is the definition of continuity, we
can conclude that the function f is continuous at x = a.

11.6.2 Common Functions are Continuous Where They are Defined

As we mentioned earlier in this chapter, the functions that are commonly used in mathematics and
its applications at this level are all continuous where they are defined. Let’s be a little more precise
about this, and see which examples are relatively easy to prove.

Let’s start with power functions, where the power is a whole number; that is, functions such as
y=1,y=ux,y =2’ and all such functions of the form y = 2", where n is a whole number.

THEOREM 9
Continuity of power functions for whole-number exponents

Functions of the form f(z) = 2", where n is a whole number, are continuous for all real values
of .

Proof: Suppose that n = 0. Then the function is f(x) = 1, which is continuous for all values of
2. You can prove this by choosing a positive value of § arbitrarily for a given positive value of .

Suppose that n = 1. Then the function is f(x) = x, which is continuous for all values of z. You
can prove this by choosing § = ¢ for a given positive value of ¢.

For higher powers of x, we can repeatedly use the product rule for limits to show that the result
is valid. For example, suppose that n = 5. Then we can write

limz® = lim (z-z-2 - - z)
Tr—a Tr—a

T = () () () () (o)
lim 2° = (a) (a) (a) (a) (a)

xr—a
lim 2° = @
r—a

By the definition of continuity, this shows that f(z) = 2° is continuous at = = a.
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The same reasoning can be used for any whole-number value of n, which completes the proof.

If you find this proof not rigorous enough for your liking, you can construct a proof using the
principle of mathematical induction, as follows. The cases n = 0 and n = 1 have already been
proved above. Now suppose that the function f(z) = z* is continuous at 2 = a for some natural
number k, and we’ll use this fact to show that the function g(z) = z**! is also continuous at

T = Q.

Because f is continuous at x = a, it follows that

lim 2* = o*
r—a

Observe that

lim 2! = lim (;v . l’k)

Tr—a T—a

lim 2%+ = (hm :c) (lim :Ek) (by the product rule for limits)
Tr—a T—a r—ra

lim 2** = (a) (ak> (by the induction hypothesis)

Tr—a

lim % +! = gF+!

Tr—a

Thus, the function g(z) = z**! is also continuous at 2 = a. By the principle of mathematical
induction, all functions of the form f(z) = z", for all natural numbers n, are continuous at all

real numbers.

With the help of the previous theorem, and also with the help of the limit laws, it is possible
to prove that all polynomial functions are continous.

THEOREM 10

Polynomial functions are continuous

Each polynomial function is continuous at each real value.

Proof: Applying the limit laws to a polynomial function of degree n,
f(x) =bpa™ +by12™ 1 -+ box® + bz + by

we obtain

lim f(z) = hm ( bpx™ + by L+ A+ box? + by + bo)

Tr—a

lim f(x
Tr—a

(z)
(z) = hm( 2") + lim (bp—12" ") + -+ + lim (bp2®) + lim (by) + lim (bo)
lim f(x) = by lim (2") + by lim (z"71) + oot by lim (?) + b1 lim () + bo
() = bp (@) + bp—1 (a" 1) 4+ -+ + by (a®) + by (a) + by
(z) = f(a)

Therefore, an arbitrary polynomial function of degree n is continuous at an arbitrary value xz = a.
Thus all polynomial functions are continuous for all real values.

lim f(x
Tr—a

lim f(x
Tr—a



11.6. PROOFS OF SOME THEOREMS 179

It will be good for you to work through each line of the proof of the previous theorem and
identify which limit law or theorem was used at each step.

Next, it is possible to prove that all rational functions are continuous for all values of x for which
they are defined. (A rational function might have its denominator equal to zero (and therefore be
undefined) at certain values of x; such a rational function might have a hole discontinuity or a
vertical asymptote at such values of x.) Try proving this for yourself. Strive to state the theorem
precisely, and then explore examples to determine whether there are any exceptions that would
require you to restate the theorem more precisely. A strategy for proving this theorem is to express
a rational function as a quotient of two polynomial functions, and then apply a limit law and invoke
the theorem on the continuity of polynomial functions.

Next, it is a fact that algebraic combinations of continuous functions are also continuous. For
example, if f and g are functions that are separately continuous at x = a, then the combinations
f+g, f—g,and fg are all continuous at x = a. Similarly, f/g is continuous at x = a provided
that g(a) # 0. Once again, try proving these for yourself using the strategy of applying appropriate
limit laws. The proofs should require no more than a few lines each.

11.6.3 Compositions of Functions

Another very important algebraic process is the composition of functions, and theorems about how
various other operations interact with the composition operation are therefore also important. For
example, it is possible to interchange the order of operations when applying a limit operation with
a function operation, provided that the function is continuous. The precise statement is in the
following theorem.

THEOREM 11

Interchanging limits and continuous functions

If
ligl g(x) = L and f is continuous at L, then
lim (£ (g(2))] = f |lim g(x)|

Proof: Because f is continuous at L, which means that

lim f(y) = f(L)

y—L
it follows that given & > 0 there exists d; > 0 such that
O<ly—Ll<d = |fly)—f(L)l<e
Because

lim g(z) =L

Tr—a

it follows that given d; > 0 there exists § > 0 such that
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O0<|z—a|<d = |g9(z)—L|<h

Identifying y with g(z), we can therefore conclude that given € > 0 there exists § > 0 such that
O<|z—al<d = |g(z)-Ll<d = [flg9(x))—-f(L)]<e

Thus, by the precise definition of a limit,

lim [f (g(2))] = f(L)

lim [£ (g(2))] = f |lim g(x)|

The composition of continuous functions is continuous, as stated in the next theorem. Recall
the definition of the symbol for composition of functions:

(fog)(z)=f(g())

THEOREM 12
A composition of continuous functions is continuous

Suppose that the function g is continuous at a and also that the function f is continuous at L.
Then the composition f o g is continuous at a.

Proof:
li_r}n [f (g(x)]=f {h_r)n g(x)] (, by Theorem 11, because f is continuous at g(a))
gg‘ll [f (g(x))] = f (g9(a)) (because g is continuous at a)

By the definition of continuous function, this means that f o g is continuous at z = a.

11.6.4 Intermediate Value Theorem

The intermediate value theorem is a useful technical tool. After stating and proving the theorem
we apply the theorem in a technique for solving difficult equations called the bisection method.

You can get an intuitive sense for the theorem by imagining sketching a graph of a continuous
function f that satisfies these conditions: Suppose that a < b, that f(a) < f(b), and also that
fla) < d < f(b). Note that if you sketch the graph of f on the interval a < x < b your pencil
will have to cross the horizontal line y = d at some point on the interval. (Because the function
is continuous, you must keep your pencil on the paper throughout the sketching process.) At this
intersection point, the function value is equal to d, and this is the substance of the intermediate
value theorem. See Figure and try sketching the line for yourself. You'll understand that it is
not possible to sketch a continuous function graph joining the indicated points without the graph
crossing the blue line.
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Figure 11.6: This figure provides you with intuition about the intermediate value theorem. If you
sketch the graph of a continuous function connecting the two indicated points, the graph must cross
the horizontal blue line.

After considering the graph for a while, I hope that you’ll agree that the intermediate value
theorem is indeed natural and believable. However, mathematicians have been burned over the
centuries too many times by believing things that seem entirely natural, only to have a very
clever colleague later construct an ingenious counter-example that showed their beliefs to be false.
Therefore, one must not simply rely on good feelings, although they may be a good start. In
mathematics one must strive for clear and rigorous proofs of theorems.

THEOREM 13
The intermediate value theorem

Suppose that the function f is continuous for all values of x such that a < x < b, where a # b,
and suppose that f(a) # f(b). Choose any y-value, call it d, such that d is strictly between f(a)
and f(b). (That is, either f(a) < d < f(b) or f(b) < d < f(a).) Then there is at least one
x-value, call it ¢, where a < ¢ < b, such that f(c) = d.

Proof: The standard proof of this theorem depends on facts about infinite sequences that we
have not studied yet, so we shall postpone the proof for later in this textbook.

Although we are postponing the proof of the intermediate value theorem, some evidence for its
validity can be obtained by its use in solving equations, as the following examples show.

11.6.5 The bisection method for solving equations

Almost all equations encountered at high-school level and below can be solved “analytically;” this
means that there is formula for the solution, and so in principle one can obtain an exact result. Of
course, not all equations encountered in practical situations are like this; naturally what we learn
in school begins with the easiest situations and then later builds towards the more challenging
situations. What does a scientist, engineer, or other practical person do when they encounter an
equation that is too complicated to be solved by formula? Typically one turns to software tools,
but someone had to program these software tools, and it is valuable to have some ideas about how
such software is programmed, because you may need to adapt some such ideas in your own work
down the road.
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The branch of mathematics devoted to obtaining approximate solutions to equations that cannot
be solved analytically is called “numerical methods,” and entire books have been written about
small slices of this sub-field. We clearly don’t have room in an introductory calculus textbook to
devote much time and space to this field[l] but we introduce the bisection method in this section,
which is a simple idea for approximating the solution to a difficult equation. This idea is based on
the intermediate value theorem.

As we have already described near the beginning of this chapter, the very best approximation
schemes are those that can be improved by iterative (i.e., step-by-step) processes so that one can
obtain as good an approximation as desired by performing as many iterations as needed. The
bisection method is such a method.

We’'ll introduce the bisection method by considering an example. Suppose you would like to
solve the equation

COST =T

There is no formula that provides an analytic solution; that is, of the form = = .... Are there any
solutions at all? This is an important first step: Do some preliminary analysis to convince yourself
that there are indeed some solutions before you waste a lot of time searching for possible solutions
that don’t actually exist. The functions y = cosz and y = z are familiar enough that a quick
sketch will provide some guidance. After you draw a rough sketch, consult Figure

Y _
y y—.f

2

Figure 11.7: The z-coordinate of the intersection point of the graphs of y = cosz and y = «
represents the solution of the equation cosx = z.

Based on our understanding of the properties of the graph of the cosine function (it is periodic),
the figure makes it clear that there is indeed a solution to the equation, and that there is only one
solution. It also appears from the figure that the solution is somewhere between x = 0 and x = 1.

The next step in finding the solution to the equation is to rearrange the equation into the
equivalent form

cosr—zxz =0

This may seem like a pointless manipulation, but it will become apparent shortly that it does
simplify our task a little bit. This is typically the case, and so it is common to rearrange all
equations that need to be solved into the form (some combination of quantities) = 0. Figure m
shows the graph of the function g(z) = cosx — x. The solution to the equation cosz — z = 0
corresponds to the z-codrdinate of the point where the graph of the function g(x) = cosz — x
intersects the z-axis.

LA few other numerical methods are introduced later in the book.
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Figure 11.8: The z-coordinate of the point where the graph of g(x) = cos x — = intersects the z-axis
represents the solution of the equation cosx = z. In the text, this solution is approximated using
the bisection method.

Now let’s use the bisection method to approximate the solution of the equation cosx = =x.
Remember that we are searching for a value of = for which g(x) = 0. Using an electronic calculator
(remembering to use radian mode), you can verify that (rounded to four decimal places)

g(0) =1 and g(1) = —0.4597

Note that g is a continuous function, and therefore we can apply the intermediate value theorem
to g on the interval between x = 0 and = = 1 to conclude that there is indeed a value of x between
0 and 1 for which g(z) = 0. Now calculate the value of g at the midpoint of the interval:

9(0.5) = 0.3776

Noting that ¢(0.5) is positive and g(1) is negative, we can apply the intermediate value theorem to
the interval between x = 0.5 and = = 1 to conclude that there is a value of x between 0.5 and 1 for
which g(z) = 0. Next calculate the value of g at the midpoint of this new interval:

9(0.75) = —0.0183

Because ¢(0.5) is positive and ¢(0.75) is negative, we can apply the intermediate value theorem to
the interval between z = 0.5 and z = 0.75 to conclude that there is a value of x between 0.5 and
0.75 for which g(z) = 0. Once again we can bisect the current interval and calculate the value of g
at the midpoint:

9(0.625) = 0.1860

We can conclude that the solution lies between x = 0.625 and z = 0.75.

It would be a worthwhile exercise to continue in this way for a few more steps. Organizing your
calculations in a table might be helpful. Once you have done this you can compare your results
with the ones here:

9(0.6875) = 0.0853

9(0.71875) = 0.0339

9(0.734375) = 0.0079
9(0.7421875) = —0.0052
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Based on the steps performed so far, we can conclude that the solution to the equation cosz = x
is between 0.734375 and 0.7421875. Thus, after seven bisections of the original interval, we can be
certain about the first decimal place in the solution, but are uncertain about the second decimal
place, which could be 3 or 4. The method appears to converge on the solution slowly, which is not
great, but the method is very straightforward and easy to program.

Using software, one obtains the approximation
x =~ 0.739085

which is better than the approximation we have obtained so far with the bisection method. One
wonders how many iterations of the bisection method would be needed to obtain this level of
accuracy. If you are good at programming, you might pursue this question.

Although the bisection method converges only very slowly, it is fail-safe in the sense that as long
as the initial interval contains only one solution to the equation, the bisection method is guaranteed
to converge on the result. Later we shall discuss the Newton-Raphson method for approximating
the solution of an equation, and at that point you can compare and contrast the two methods, after
which you will get a better appreciation of the strengths and weaknesses of each method.

Do you understand why rearranging the equation cosxz = z into the form cosz —xz = 0 is
helpful? Note that if we used the original form of the equation, at each step we would have to
compare the values of the two sides of the equation to see which is greater. But one of the sides
of the equation changes at each step, so one must be very attentive. Using the rearranged form
of the equation, the task is simpler, because one only has to note the sign of the newly-calculated
function value at the midpoint of the interval.

In summary, the bisection method is conceptually simple, and also easy to implement. It is
effective provided that the starting interval contains exactly one solution. If you are good at
programming, you can easily program this method using the software program of your choice.

EXERCISES

(Answers at end.)

Use the bisection method to approximate the solution to each equation. Use your judgement to
choose a reasonable starting interval and a reasonable number of iterations in each case. If you
can program the method, then trying a few “by hand” (that is, using an electronic calculator),
and then try automating a few. Practicing both by hand and writing a program will be useful
to you.

l. smx=xz-1
2.2 = —x

3. 3+ 2 =—-1

4. z* + 52 =3
5. 3% = g2
6. 27 = g2

Answers: 1. = &~ 1.93456; 2. = ~ —0.641186; 3. = ~ —0.453398; 4. = ~ —1.87572 and = ~ 0.577719; 5.
x ~ —0.686027; 6. x =2, z =4, and z ~ —0.766665
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SUMMARY

The intermediate value theorem is a technical result about continuous functions that provides
useful tools for solving equations.
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Chapter 12

Conceptual Review Questions

Writing a few sentences about each of the following questions will remind you about key ideas of
the chapter, and will test your understanding. If you have difficulty answering any of them, then
review of the corresponding sections is warranted.

10.
11.
12.
13.
14.
15.

16.

. Discuss the connection between slope and rate of change.

. Is the numerical procedure discussed in the early part of this chapter effective for determining

the slope of any graph?

. Discuss advantages and disadvantages of the numerical procedure for estimating the slope of

a curve at a point.

What is a tangent line?

. How is the derivative of a function defined?

. What does it mean for a function to be differentiable at a point of its graph? Can you tell if

a function is differentiable or not by examining its graph?

Compare and contrast jump discontinuities and hole discontinuities. Are there any other
kinds?

In calculating a limit that arises from a calculation of a derivative, the numerator and denom-
inator of the resulting quotient both approach zero. How does one get around this difficulty
without violating the rules of algebra?

. When calculating a limit, is it ever justified to simply substitute a value? Explain.

Is infinity a number? Explain.

If a limit is infinite, does this mean the limit exists? Explain.

What is a “ghost of a departed quantity?” What are their significance?
How are limits related to left-hand limits and right-hand limits.

What is the intermediate value theorem? What is one of its applications?
What is an asymptote? How can you determine asymptotes of various type?

Is it true that the graph of a function cannot intersect one of its asymptotes? Explain.
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17.
18.
19.
20.
21.
22.
23.

24.

CHAPTER 12. CONCEPTUAL REVIEW QUESTIONS

Are there various levels of infinity? Explain.

What is the formal definition of limit? Why is it needed?

What is the triangle inequality? How could you describe it in plain terms?
What is the squeeze theorem? What is its value?

Is every continuous function differentiable? Explain.

Is the product of two continuous functions continuous? Explain.

Is the quotient of two continuous functions continuous? Explain.

What is the bisection method? What is it used for?
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